

Sierra Nevada Climate Change Vulnerability Assessment and Adaptation Strategy for Infrastructure and Recreation

CLIMATE CHANGE AND INFRASTRUCTURE

Gordon R. Keller, PE, GE

Geotechnical Engineer GENESEE GEOTECHNICAL Retired USDA Forest Service

Chapter Outline

Gordon Keller, Leslie Boak, Dave Peterson, Mike Furniss, Facilities Engr. ??, et al.

Introduction Area of Study (Sierra Nevada) Infrastructure Addressed USFS Climate Change &Transportation Resiliency Guidebook Climate Change Effects Temperature, Precipitation, Snowpack, Rainfall Intensity, Seasons Geologic Hazards and Infrastructure

Fires, Landslides/Debris Flows, Flooding Hydrology and Infrastructure Interactions Vulnerability and Risk Assessment Process & Tools

> Risk Based Design Watershed Condition Assessments Transportation Analysis Best Management Practices ERFO And FHWA Efforts Other Agency Efforts- WDFW, CalTrans, etc.

Chapter Outline -Continued

Gordon Keller, Leslie Boak, Dave Peterson, Mike Furniss, Facilities Engr??, et al.

Effects of Climate Change on Transportation Infrastructure and Mitigations Roads and Road Maintenance (Surface Drainage, Freeze/Thaw, Decommissioning, Location, Fire Detours) Culverts and Fords (Stream Simulation, Plugging, Diversion Potential) Bridges (Capacity, Freeboard, Scour Potential) Trails (Location, Drainage, Stability, Season of Use)

Effects of Climate Change on Facilities Infrastructure and Mitigations Developed Recreation Sites/Campgrounds Buildings Water Systems Comunications Systems

Effects of Climate Change on Other Infrastructure and Mitigations Dams (Capacity, Spillways, FERC Relicensing)

Summary and References

U.S. Forest Service Climate Change and Transportation Resiliency Guidebook

Addressing and Assessing Climate Change Impacts on U.S. Forest Service Transportation Assets

VOLPE

DRAFT — December 2016

Prepared for: U.S. Forest Service

Geologic Hazards and Vulnerabilities Geologic Hazards are Huge–But Some Can be Minimized or Mitigated!!

-Debris Flows and Landslides

-Flooding

-Erosion & Gully Formation

-Stream Channel Instability/Changes

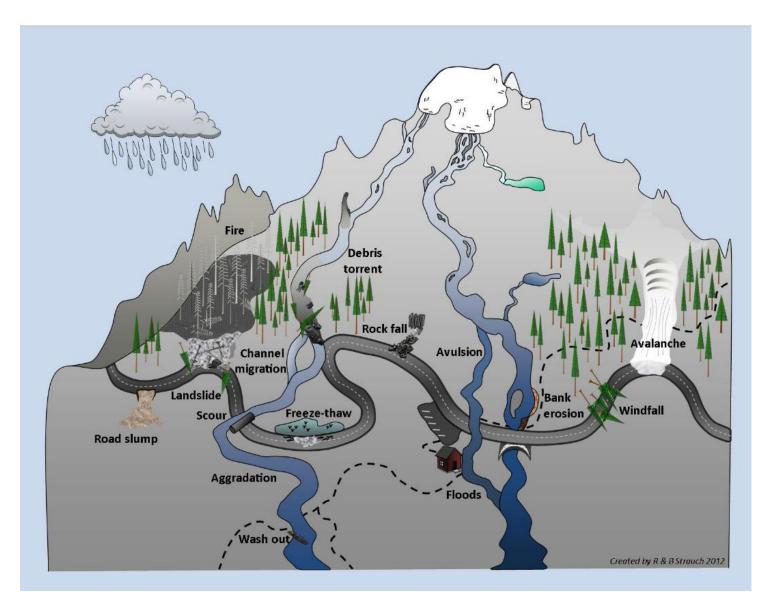


Figure 10.1—Many geomorphic, hydrologic, and weatherrelated disturbances can damage roads and other infrastructure. Figure from Strauch et al. (2014).

Risk Assessment

Table 1—Risk assessment matrix

Probability of	Magnitude of Consequences					
Damage or Loss	RISK					
	Major	Moderate	Minor			
Very likely	Very high	Very high	Low			
Likely	Very high	High	Low			
Possible	High	Intermediate	Low			
Unlikely	Intermediate	Low	Very low			

Risk Assessment Tools

Measures to Identify Hazards, Minimize Landscape Changes, Reduce Geologic Hazards, and Reduce Infrastructure Damage

- WEPP, ERMIT, GRAIP, USGS Slide Risk Maps
- Debris Hazard Maps
- Road Inventory Maps
- Road/Facility Damage History
- WIN/WIT
- Knowledgeable Folks/Areas to Avoid
- Critical Road Maintenance Areas
- BAER Efforts

Fire Impacts on Infrastructure

Rock Mattress 6 Years Later

French Fire, Sierra NF

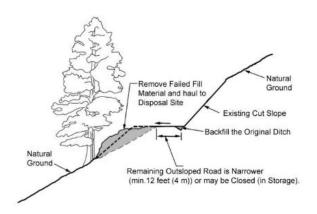
Newly Installed TRM

BAER

Debris Slide Impacts

Penny Luehring, USFS, BAER

Don Lindsay, CGS



Debris Slide Prevention and Mitigation

Preventing Drainage Concentration

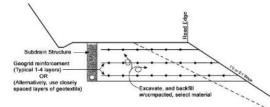
Pulling Back Sliver Fills

Containment and Deflection Structures

Landslide Impacts

Landslide Prevention and Mitigation

- Biotechnical Slope Stabilization Measures
- Deep Rooted Vegetation

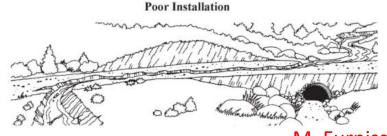


Retaining Structures

Deep Patch

CROSS-SECTION OF TYPICAL DEEP PATCH ROAD EMBANKMENT REPAIR

Flooding and Drainage Issues


Local Flooding

Stream Diversion

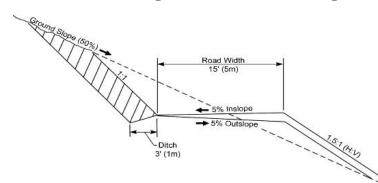
b. Sketch of a stream diverted down the road, forming a new channel. M. Furniss

Failed Structures
and Washouts

USFS/Volpe

Surface Drainage Issues

WATER CONCENTRATION AND CULVERT DIVERSION Surface Drainage Problems



Surface Drainage Mitigations

PREVENT WATER CONCENTRATION AND CULVERT FAILURE

Improved Surface Drainage

Outslope vs Inslope

Remove Berms

Culvert Problems

Plugging

Stream Diversion

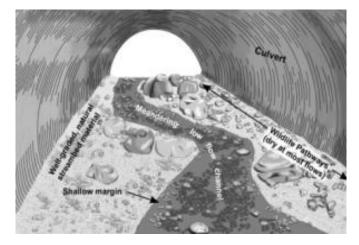
b. Sketch of a stream diverted down the road, forming a new channel. M. Furniss

Failed Structures and Washouts

FLOOD RESISTENT CULVERT DESIGN

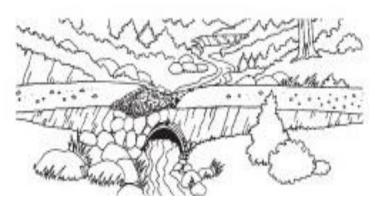
-Q50-100 vs Q25

-Use ≥ Bankfull Width


$-HW/D \le 1.0$

Flooding and Drainage Mitigations

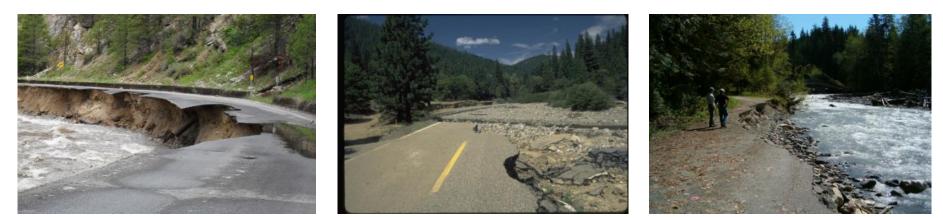
Stream Simulation Structures



Stream Diversion Prevention

Flooding and Drainage Mitigations

Drainage Structure Plugging Prevention -Trash Racks


After Fires

Stream Channel Instability STAY OUT OF HARM'S WAY • Evaluate Natural Meander Potential

MOVE INFRASTRUCTURE AWAY FROM STREAMS

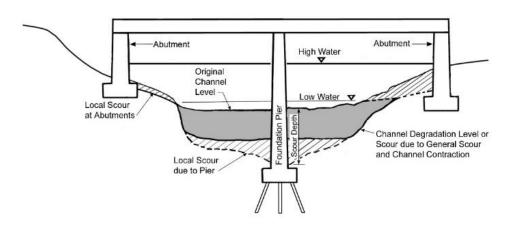
Armor Stream Channels near Infrastructure

Bridge Problems

Obstructions

Lack of Capacity

Scour Issues

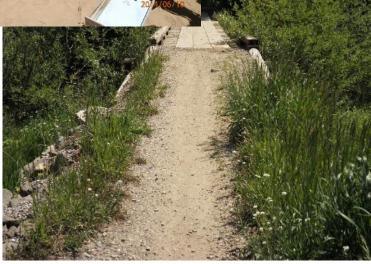

Bridge Mitigations


Adequate Capacity

Scour Prevention

Dams

• Dam Vulnerability



• FERC Relicensing Issues

Trails



Buildings

Non-Flammable Materials

Recreation Facilities & Water Systems

• Penny Luehring, USFS, BAER

Communication Systems/ Towers

Tools and Products

Table 10.1—Road length for different maintenance levelsin national forests in the U.S. Forest Service Intermountain Region.From the U.S. Forest Service Infrastructure database

Operational maintenance level										
National Forest	Basic custodial care (closed)ª	High clearance Vehicles ^b	Suitable for passenger cars ^c	Moderate degree of user comfort ^d	High degree of user comfort ^e	Total				
	Miles									
Ashley	23	974	339	157	88	1,581				
Boise	1,527	2,503	542	14		4,587				
Bridger-Teton	572	983	385	214		2,154				
Caribou-Targhee	461	1,529	577	177	23	2,767				
Dixie	992	2,075	460	49	15	3,592				
Fishlake	43	1,710	168	12	7	1,941				
Humboldt-Toiyabe	493	4,351	626	69	17	5,556				
Manti-La Sal	302	1,616	290	9		2,217				
Payette	842	1,649	428	36	4	2.959				
Salmon-Challis	1,198	2,345	342	41	2	3,928				
Sawtooth	268	1,341	270	17	21	1,916				
Uinta-Wasatch-Cache	182	1,689	96	141	125	2,570				
Total	6,903	22,764	4,863	936	302	35,768				

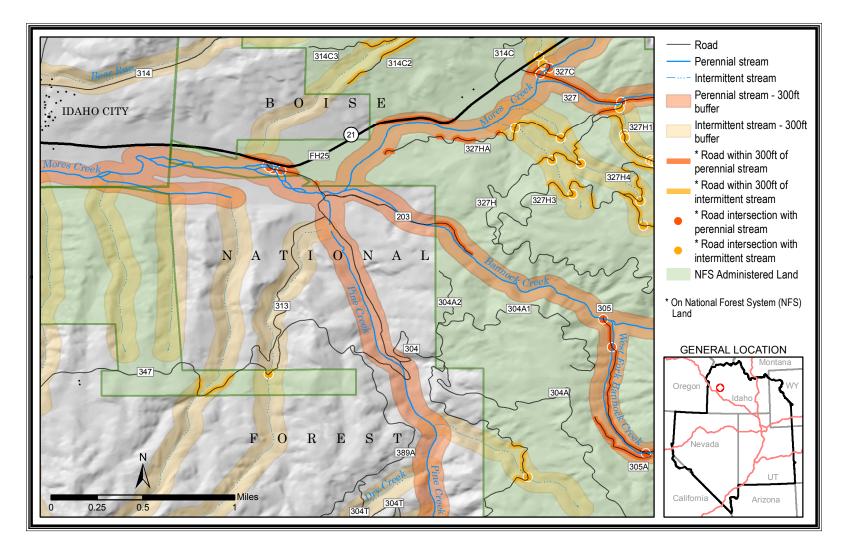
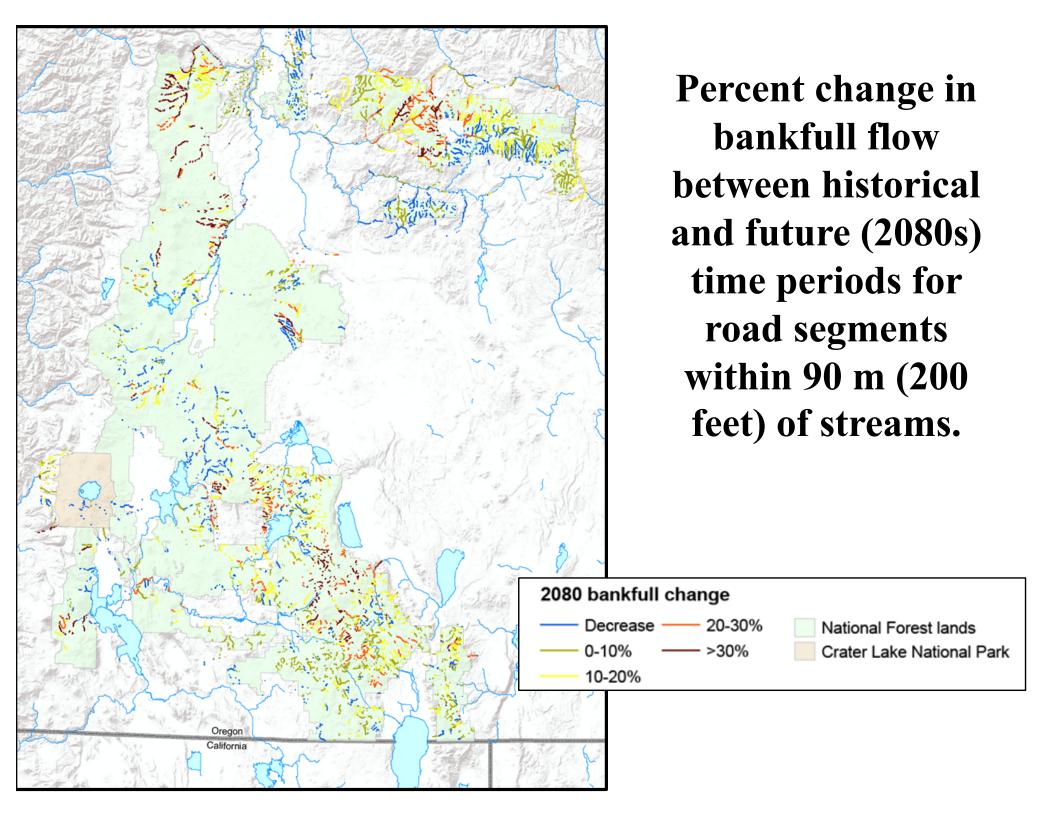



Figure 10.6—Mapping buffers around streams can be used to identify current roads that are potentially at risk from flooding, and to preclude the placement of new roads in vulnerable locations.

Burn Severity and Debris Slide Risk Mapping

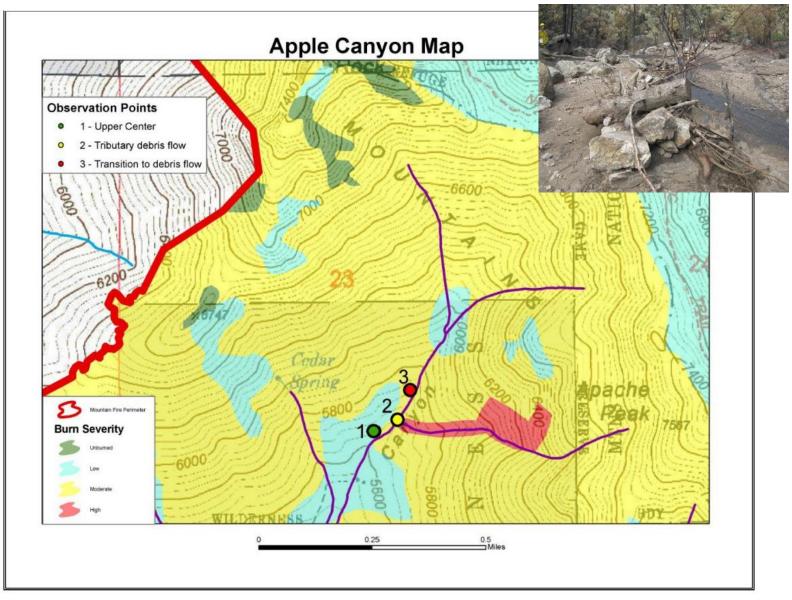


Figure 1. Map of the watershed which was the source of the debris flow impacting the Yokoji-Zen Mountain Center. The point locations (1-3) are referred to in the text.

"Storm Damage Risk Reduction Guide for Low-Volume Roads"

http://www.fs.fed.us/td/pubs/pdfpubs/pdf12771814/pdf1277 1814dpi100.pdf

or

http://www.fs.fed.us/eng/php/ library_card.php?p_num=1277%201814

-US Forest Service Climate Change & Transportation Resiliency Guidebook

-RMRS-GTR 375, Chapter 11: Effects of Climate Change on Infrastructure

Gordon R. Keller, PE, GE

Consulting Geotechnical Engineer Quincy, California gordonrkeller@gmail.com 530-284-6441

