
 

 

 

 

 

 

 

 

 

California Climate Risk: 
Evaluation of Climate Risks 
for California Department of 
Water Resources 
 

A Collaborative Study of the Hydrosystems Research Group, University of 
Massachusetts, Amherst, and the California Department of Water Resources 
Division of Integrated Water Management 

 

Inception Report 

7 February 2017 

  



ii 
 

Contents 
Executive Summary ............................................................................................................................................ viii 

Introduction .......................................................................................................................................................... 1 

Climate Change in California ................................................................................................................................. 1 

Observed Trends ............................................................................................................................................... 2 

Projections ........................................................................................................................................................ 5 

Atmospheric Rivers ........................................................................................................................................... 7 

Drought ............................................................................................................................................................. 7 

Previous Studies .................................................................................................................................................... 8 

Relevant Studies Conducted to Date ................................................................................................................ 8 

Studies and Other Efforts in Progress as of December 2015 ............................................................................ 9 

Academic studies of climate change impact on the water resources of California .......................................... 9 

Methodology ...................................................................................................................................................... 11 

Description of Study Area ............................................................................................................................... 13 

Description of Weather Generator ................................................................................................................. 15 

Development of New Climatological Sequences ........................................................................................ 16 

Application of Climate Shifts ...................................................................................................................... 18 

Details on Approach to Climate Change Factors ........................................................................................ 19 

Description of SAC SMA Hydrologic Model .................................................................................................... 21 

Hamon Evapotranspiration Calculation ...................................................................................................... 22 

In-grid Routing: Nash-Cascade Unit Hydrograph ....................................................................................... 22 

River Channel Routing: Linearized Saint-Venant Equation ........................................................................ 23 

Water Resources System Model ..................................................................................................................... 23 

Generation of Inputs to CalLite .................................................................................................................. 24 

Model Verification .............................................................................................................................................. 34 

Weather Generator Performance ................................................................................................................... 34 

Hydrologic Model Performance ...................................................................................................................... 36 

System Model Performance ........................................................................................................................... 37 

Risk Assessment Results ..................................................................................................................................... 39 

Exposure ......................................................................................................................................................... 39 

Sensitivity ........................................................................................................................................................ 40 

Vulnerability and Risk ..................................................................................................................................... 40 

Performance Metric 1: Oroville Storage ..................................................................................................... 42 



iii 
 

Performance Metric 2: Net Delta Outflow ................................................................................................. 46 

Performance Metric 3: Annual SWP Deliveries .......................................................................................... 52 

Performance Metric 8: Annual SWP Delivery Shortages ............................................................................ 54 

Summary ............................................................................................................................................................. 56 

Other Considerations and Next Steps ................................................................................................................. 57 

References .......................................................................................................................................................... 58 

Appendix ............................................................................................................................................................. 64 

 

 

  



iv 
 

Figures 
Figure 1. Trend in annual mean temperature for the region contributing flow to the California Department of 
Water Resources system, 1915-2011. .................................................................................................................. 2 
Figure 2. Monthly trends in annual mean temperature for the region contributing flow to the DWR system, 
1915-2011. ............................................................................................................................................................ 3 
Figure 3. Trend in annual mean precipitation for the region contributing flow to the DWR system, 1915-2011.
 .............................................................................................................................................................................. 4 
Figure 4. Monthly trend in annual mean precipitation for the region contributing flow to the DWR system, 
1915-2011. ............................................................................................................................................................ 4 
Figure 5. Precipitation in the Shasta watershed 1915-2011 from Livneh et al. [2013]. ....................................... 5 
Figure 6. Mid-Century Conditional Climate Probability Density. Cyan dots represent GCMs run with RCP 8.5; 
yellow dots represent GCMs runs with RCP 6.0; turquois dots represent GCMs run with RCP 4.5; Green dots 
represent GCMs runs with RCP 2.5 ....................................................................................................................... 6 
Figure 7. Modeling Workflow for Climate Change Vulnerability Assessment .................................................... 12 
Figure 8. California Central Valley System and Rim Sub-basins. Table inset shows the percent contribution of 
each river to the total delta outflow. Fifteen percent of the total delta outflow is contributed by unshaded 
areas within the red outline. .............................................................................................................................. 13 
Figure 9. State, Federal, and Local water infrastructure from the California Water Plan [2013] Volume 3, pg 7-
6 .......................................................................................................................................................................... 15 
Figure 10. Wavelet power spectrum for average annual precipitation for the Central Valley catchment (1950-
2003). .................................................................................................................................................................. 17 
Figure 11. Exploration of differential rate of change in precipitation (left) and temperature (right) between 
early-mid-20th century (1920-1960) and the end of the 20th century (1980-2011). Hollow triangles show 
changes in high-elevation (>2000 m) grid cells of the Maurer et al. [2002] dataset, and solid dots show 
changes in low-elevation (<2000 m) grid cells. ................................................................................................... 19 
Figure 12. CMIP5 Projected temperature change: 1971-2000 vs 2036-2065 .................................................... 20 
Figure 13. CMIP5 Projected precipitation change: 1971-2000 vs 2036-2065 .................................................... 20 
Figure 14. Schematic of distributed hydrologic model ....................................................................................... 22 
Figure 15. CalLite schematic ............................................................................................................................... 24 
Figure 16. Maps of three calibration sets for the application of SAC-SMA-DS to the CVS ................................. 26 
Figure 17. Pearson correlation coefficients of two historical local inflows (I_BRANANIS and I_MDOTA) with 
historical 12 rim inflows. ..................................................................................................................................... 28 
Figure 18. Quantile mapping procedure applied to example California sub-basin ............................................ 30 
Figure 19. Input variables with strong correlation to San Joaquin Water Year Type classification-historical 
observed data shown. ......................................................................................................................................... 31 
Figure 20. AD_Wilkins: Correlation with Shasta flow ......................................................................................... 32 
Figure 21. AD_SACAME historical behavior ........................................................................................................ 33 
Figure 22. Estimates of Sea Level Rise by Degree C ............................................................................................ 34 
Figure 23. Performance of WARM Weather Generator WARM – Annual Precipitation .................................... 35 
Figure 24. Validation of CalLite stress test modeling workflow for Total North of Delta Storage. Top: 
Scatterplot fit of annual averaged validation trace values to default trace values. Bottom: Default (blue) and 
validation (red) trace monthly Total North of Delta Storage showing perfect fit before 1950 and differences 
after 1950. .......................................................................................................................................................... 37 



v 
 

Figure 25. Validation of CalLite stress test modeling workflow for Delta Outflow. Top: Scatterplot fit of annual 
averaged validation trace values to default trace values. Bottom: Default (blue) and validation (red) trace 
monthly Delta Outflow showing perfect fit before 1950 and differences after 1950. ....................................... 38 
Figure 26. Validation of CalLite stress test modeling workflow for SWP Annual Deliveries. Top: Scatterplot fit 
of annual averaged validation trace values to default trace values. Bottom: Default (blue) and validation (red) 
trace monthly SWP deliveries showing perfect fit before 1950 and differences after 1950. ............................ 39 
Figure 27. Response Surface – April 1st Oroville Storage .................................................................................... 42 
Figure 28. Response Surface – April 1st Oroville Storage, with GCM “cloud” ..................................................... 43 
Figure 29. Shift in April 1st Oroville storage, Current to Mid-Century Conditions .............................................. 44 
Figure 30. Response Surface – September 1st Oroville Storage without (left) and with (right) GCM “cloud” ... 45 
Figure 31. Shift in September 1st Oroville Storage, Current to Mid-Century Conditions.................................... 46 
Figure 32. Response Surfaces –Net Delta Outflow ............................................................................................. 47 
Figure 33. Response Surfaces –Net Delta Outflow with GCM “cloud” ............................................................... 48 
Figure 34. Shift in Winter Net Delta Outflow, Current to Mid-Century Conditions............................................ 49 
Figure 35. Shift in Spring Net Delta Outflow, Current to Mid-Century Conditions ............................................. 50 
Figure 36. Shift in Summer Net Delta Outflow, Current to Mid-Century Conditions ......................................... 51 
Figure 37. Shift in Fall Net Delta Outflow, Current to Mid-Century Conditions ................................................. 52 
Figure 38. Response Surface – Annual SWP Deliveries without (left) and with (right) GCM “cloud” ................ 53 
Figure 39. Shift in SWP Annual Deliveries, Current to Mid-Century Conditions ................................................. 54 
Figure 40. Response Surface – Annual SWP Delivery Shortage without (left) and with (right) GCM “cloud” .... 55 
Figure 41. Shift in Annual SWP Delivery Shortage, Current to Mid-Century Conditions .................................... 56 
Figure 42. CDF of annual streamflow of a subsample of wavelet (WARM) and non-wavelet (ARMA) weather-
generated traces (no temp/precip change) relative to observed historical and paleo record cdfs ................... 64 
Figure 43. CDF of annual streamflow of a subsample of all weather-generated traces (no temp/precip change) 
relative to observed historical and paleo record cdfs ........................................................................................ 65 
 

  



vi 
 

Tables 
Table 1. Decision relevant metrics ...................................................................................................................... 12 
Table 2. Hydrologic Sequences with 15 Year Wavelet Signal ............................................................................. 17 
Table 3. Range of Temperature and Precipitation Changes Explored ................................................................ 18 
Table 4. Twelve Major Rim Inflows to the CalLite Model ................................................................................... 25 
Table 5. R Squared Correlations for 31 most important inputs .......................................................................... 27 
Table 6. Pairs of rim flows and local inflows determined by correlation. Blue bold text in parentheses 
represent the values of Pearson’s correlation coefficient and red bold text represent contribution of local 
inflows to the total system inflows. .................................................................................................................... 29 
Table 7. Sea Level Rise Discretization within CalLite 3.0 .................................................................................... 34 
Table 8. Statistics of the 12 WARM Weather Generator Runs Selected for Drought Characteristics ................ 36 
Table 9. Hydrologic model performance by sub-basin ....................................................................................... 36 
Table 10. Conditional Climate Probability Density of each Climate Change Shift, 1970-2000 to 2035-2065 .... 40 
 

  



vii 
 

Abbreviations 
AD  accretion/depletion parameters within CalLite 
ARMA  auto-regressive moving average model 
WARM  Wavelet ARMA model 
CalLite  a simplified, faster version of CalSim 
CalSim  the DWR and USBR California water resources simulation model 
CALVIN CALifornia Value Integrated Network, a hydro-economic optimization model of California’s 

statewide water supply system 
cdf  cumulative distribution function 
CMIP  Coupled Model Intercomparison Project 
CVP  Central Valley Project 
CVS  California Central Valley System 
CWP  California Water Plan 
DWR  California Department of Water Resources 
ENSO  El Niño Southern Oscillation 
GCM  General Circulation Model 
IPCC  Intergovernmental Panel on Climate Change 
MAF  million acre-feet 
NOAA  National Oceanic and Atmospheric Administration 
NWS  National Weather Service 
pdf  probability density function 
PDO  Pacific Decadal Oscillation 
RCP  Representative Concentration Pathways 
SAC-SMA-DS a distributed version of the Sacramento Soil Moisture Accounting hydrologic model 
SWE  Soil water equivalent 
SWP  State Water Project 
USBR  United States Bureau of Reclamation 
WRIMS  Water Resource Integrated Modeling System 
 

  



viii 
 

Executive Summary 
This Inception Report introduces a joint endeavor of the California Department of Water Resources (DWR) 
and the University of Massachusetts, Amherst (UMass), to improve planning for the uncertain effects of 
climate change on DWR’s system by integrating vulnerability-based analysis with traditional risk-based 
assessment methods. This report summarizes progress made during approximately two years of informal 
partnership during which the team defined research goals, established an experimental approach, developed 
and validated a workflow of modeling tools, tried and abandoned a number of alternative experimental 
designs, refined the strategy for data visualization, and produced preliminary assessments of the vulnerability 
of the DWR water system to climate change. 

The report begins with a review of historical and projected climate change in California, which includes 
description of a number of explorations by the DWR-UMass team into climate trends and projections within 
the California Central Valley System (CVS), specifically. The next section of the report summarizes previous 
work accomplished by the academic community, the government, and the community of water resources 
practitioners evaluating climate change related risks to the DWR system. 

With that background in place, the report moves to an explanation of the methodology developed for this 
study (illustrated in Figure ES1), and provides details on each sub-step of the process. It is explained that, 
whereas these previous studies have tested the response of some aspect of the California water system to 
climate traces different from the historical, the decision scaling approach adopted for this study allows 
systematic assessment of the vulnerability of the entire (interconnected and complex) DWR water system to 
a wide range of potential future climate conditions, and quantification of the significance of climate shift 
relative to natural (and climate-change-amplified) variability. The climate response function that results from 
the decision scaling approach identifies the range of climate changes within which the performance of the 
system is acceptable, and the critical amount of climate change beyond which violations of water system 
performance will occur. An important benefit of this approach is the ability to assign formal probability 
estimates to the vulnerability space, which allows discussion of risk and opportunity (each a function of 
impact and likelihood) in water system investment.  

DWR’s vulnerability assessment for long-term and persistent hydrologic impacts of climate change focuses on 
impacts to the operation of the State Water Project (SWP), including ecological conditions that dictate 
operating rules. DWR owns and operates the SWP for flood control, maintenance of environmental and 
water quality conditions, water supply, hydropower, and recreation. Thus, analysis of SWP performance 
under climate changed conditions yields an array of impact metrics across all of these areas of concern.   

This study has adopted CalLite 3.0, a simplified, faster version of the water system model used by DWR 
(CalSim-II), to simulate the coordinated operations of the Central Valley Project (CVP) and SWP under a wide 
range of climate possibilities. This study uses a weather generator to develop time series of plausible 
alternative precipitation and temperature, which are then sampled systematically in order to explore a wide 
range of climate change characteristics. An advanced hydrologic model (in this case SAC-SMA-DS) translates 
descriptors of fundamental meteorological drought into measures of available water at Earth’s surface. The 
estimates of available water from the hydrologic model become the key inputs to a water system model 
(CalLite 3.0), which simulates the complex interactions of water supply, water demand, regulatory 
compliance, and operational choices and produces measures of water system performance such as water 
deliveries, reservoir storage, and river flow volume. In the case of CalLite 3.0, a number of additional inputs, 
beyond river flows that could not be directly provided by the hydrologic model, are required. This 
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requirement necessitated an additional pre-processing routine (quantile mapping and water year typing) that 
involves incorporation of anthropogenic co-factors in the operation of water system infrastructure.  

 

 

Figure ES1. Modeling Workflow for Climate Change Vulnerability Assessment 

 
When simulated repeatedly, the resulting workflow (Figure ES1) allows the exploration of climate change 
impact in response to a wide range of meteorological input. Table ES1 lists the decision-relevant metrics used 
for the DWR climate vulnerability assessment.  

Table ES1. Decision relevant metrics 

1 Oroville Storage levels 
  April 1st 
  September 1st 
2 Net Delta Outflow 
  Winter 
  Spring 
  Summer 
  Fall 
3 SWP Deliveries 
  Average Annual 
4 System Shortages 
  Average Annual 

 
Despite a wide range of uncertainty, results of the analysis clearly show that the majority of the conditional 
climate probability density indicates a downward shift in mid-century system performance. By 2050, the 
majority of climate outcomes that might reasonably be expected lead to decreased system performance in 
each of the Table ES1 metrics. Only a small portion of the conditional climate probability density for each 
performance metric indicates improved system performance (performance better than historical). This 
situation is especially acute for average Oroville September storage, SWP deliveries, and spring net delta 
outflows, in which substantial downward shifts are identified. 

The analysis shown here suggests that it is reasonable to expect that the performance of the SWP will 
diminish over the coming decades if nothing is done to adapt to climate change. However, there are 
opportunities for improved climate change planning. At the next stage of this project, refinements will be 
made to the methodology presented in this Inception Report, and the potential benefit of a sample of 
proposed DWR climate change adaptation strategies will be systematically evaluated.  



1 
 

Introduction 
Developing adaptation plans to address future climate changes is hindered by the uncertainty associated 
with the magnitude and character of those changes. Vulnerability-based assessments are promising for 
identifying where climate uncertainties are most problematic but can yield a litany of vulnerabilities with 
little means for prioritizing action or justifying the expenses required to address them. Given the financial 
constraints of the typical government water agency or municipality, vulnerabilities with unknown 
probabilities of their occurrence are weak priorities and long term preparedness to climate change falls prey 
to the pressing concerns of the present.  

The goal of this project is to improve planning for the uncertain effects of climate change by integrating 
vulnerability-based analysis with traditional risk-based assessment methods. Risk-based approaches are 
typical for engineering water resources but are problematic under climate change due to their dependence 
on estimating probability distributions of possible climate futures. The process adopted here preserves the 
risk-based planning framework but reserves estimation of probabilities until the assessment of adaptation 
alternatives, where the consequences of any assumption are quickly realized in terms of impacts on 
decisions.  

Water managers struggle to prioritize responses to the predicted hazards of climate change due to the 
uncertainty associated with projections of those hazards.  This struggle is not without cause. At present 
decision makers face an unsavory choice relying on trusted traditional approaches that rely on statistics of 
the past, and thus may be ill-suited for the future, or adopting uncertain projections of the future that are 
known to have least skill for the most critical design variables [Hirsch, 2011]. The prevailing wisdom of “no 
regrets” approaches that is offered in response to this dilemma [c.f., IPCC, 2012] is hardly a rallying cry for 
increasing long-term preparedness to climate change. 

This effort is designed to address this challenge directly. The methodology enables planning for future 
changes that is informed by the best available science on climate change while not dependent on precise 
prediction of future values. Instead, the process focuses on incorporating credible information on future 
changes within traditional risk-based planning approaches and through merging historical trends with future 
expectations. Those effects are delineated through a “climate stress test”, which is independent of 
projections of future climate. Where the effects are significant compared to other factors, the concern 
associated with the possible occurrence of those effects is described in accordance with the best available 
climate science. 

Previous studies including the California Water Plan Update 2013 [California Department of Water Resources, 
2013], which used a Robust Decision Making approach [Lempert et al., 2006] have identified potential 
adaptations through stakeholder consultation and systems analysis but have not systematically assessed the 
alternatives. They have also not evaluated the impacts of possible changes in climate extremes such as 
droughts and floods. This study uses previous planning efforts, in particular CWP 2013, as a foundation for 
illustrating the planning procedure for climate uncertainty described here. 

Climate Change in California 
It has long been anticipated that anthropogenic climate change would alter the water resources of California 
[Gleick, 1987]. Recent observations indicate that changes to the hydro-climatology of California have begun, 
and that further substantial change is likely to occur throughout this century.  
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Observed Trends 
Mean temperature has increased 0.6 to 1.1 C since 1900 [California Department of Water Resources, 2015a], 
and temperature change is accelerating [LaDochy et al., 2011] with greatest rate of change in temperature 
minimums [California Department of Water Resources, 2015a]. Rising temperatures in the Sierra Nevada and 
northern California have triggered decreasing snowpack and earlier snowmelt [Cayan et al., 2010; Dettinger 
and Anderson, 2015; Mote et al., 2005]. Warmer temperatures also cause sea level rise, with 0.2 meters of 
rise recorded in San Francisco Bay in the past century [NOAA, 2016], and rates of rise now accelerating [Kopp 
et al., 2016], threatening the sustainability of the Sacramento-San Joaquin Delta, the heart of the California 
water supply system and the source of water for 25 million Californians and millions of acres of farmland. 

Figure 1 shows the trend in annual mean temperature for the region of northern/central California 
contributing flow to the California Department of Water Resources (DWR) system, 1915-2011, and Figure 2 
shows the trend by month. There is a statistically significant increasing trend in the annual mean temperature 
in the region, with strongest increases from August through October. Meteorological data are from Livneh et 
al. [2013]. 

 

Figure 1. Trend in annual mean temperature for the region contributing flow to the California Department of 
Water Resources system, 1915-2011. 
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Figure 2. Monthly trends in annual mean temperature for the region contributing flow to the DWR system, 1915-
2011. 

 

Since 1970, California has gotten wetter in its north and dryer in its south [Killam et al., 2014], though the 
large historical variability of precipitation in California makes it difficult to separate trend from natural 
variability. Higgins et al. [2007] found that the period 1976-2004 was substantially wetter in the western U.S. 
than the period 1948-1975, though the large increase in total precipitation might be partially explainable by 
the occurrence of the warm phase of the Pacific Decadal Oscillation (PDO), the multidecadal counterpart to 
the El Niño Southern Oscillation (ENSO). It may be that the warm phase of the PDO during the last quarter of 
the 20th century was an exceptional period (as suggested by the 1000-year tree-ring record [Swetnam and 
Betancourt, 1998]), and that the last 15 years marks a return to normal, pre-1977 conditions [Pavia et al., 
2016]. Regionally, the central and northern regions show increases in both annual totals and number of 
rainfall days, while southern regions show either no significant trend or some decreases since the early 
1900s. A shift from light rains to heavy rains has occurred in northern CA regions [Killam et al., 2014].  

Figure 3 shows the trend in annual mean precipitation for the region of northern/central California 
contributing flow to the DWR system, 1915-2011, and Figure 4 shows the trend by month. There is a 
statistically significant increasing trend in the annual mean precipitation in the region. Data are from Livneh 
et al. [2013]. 
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Figure 3. Trend in annual mean precipitation for the region contributing flow to the DWR system, 1915-2011. 

 

 

Figure 4. Monthly trend in annual mean precipitation for the region contributing flow to the DWR system, 1915-
2011. 

 

It is not yet clear that the trend observed in the past century will continue into the coming century, nor is the 
behavior of the PDO well-enough understood that confident forecasts can be made of its oscillations far into 
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the future. The global climate models do not indicate a clearly wetter or drier expectation for the region 
(discussed later), and there are questions regarding the quality of precipitation data for the region prior to 
1950 (see Figure 5, which shows a jump in Shasta watershed precipitation at approximately 1950). We 
therefore exercise caution in conclusions attached to expectations of future precipitation in the region. 

 

 

Figure 5. Precipitation in the Shasta watershed 1915-2011 from Livneh et al. [2013]. 

 

Projections 
Figure 6 shows the shift in average annual precipitation and temperature of the ensemble of general 
circulation models (GCMs) driven with Intergovernmental Panel on Climate Change (IPCC) Representative 
Concentration Pathways (RCP) scenarios 4.5 and 8.5 in the region contributing flow to the DWR system for 
the period 2036-2065 relative to the period 1971-2000. The probability density cloud identifies the bivariate 
normal distribution on the full ensemble of the Fifth Coupled Model Intercomparison Project (CMIP5) GCMs 
(including RCPs 2.6 and 6.0). As can be seen, there is no agreement on the direction of precipitation change 
(positive of negative), with some GCM runs indicating increases in precipitation of over 20% and some 
indicating decreases in precipitation of over 20%. Temperature increases range from almost 1C to almost 4C. 
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Figure 6. Mid-Century Conditional Climate Probability Density. Cyan dots represent GCMs run with RCP 8.5; 
yellow dots represent GCMs runs with RCP 6.0; turquois dots represent GCMs run with RCP 4.5; Green dots 

represent GCMs runs with RCP 2.5 

 

The projected changes in California weather patterns could exacerbate both drought and flood risks and 
increase challenges for water supply management. Projections of future temperature across California 
suggest greater increase in summer temperatures than in winter temperatures [California Department of 
Water Resources, 2015a], and an intensification of hot extremes [Diffenbaugh and Ashfaq, 2010]. By the end 
of this century, the Sierra snowpack is projected to experience a 48-65 percent loss relative to the historical 
April 1st average on which water supply throughout the summer and fall depends [California Department of 
Water Resources, 2015a; Cayan et al., 2013].  

Most climate model precipitation projections for the state anticipate drier conditions in Southern California, 
with heavier and warmer winter precipitation in Northern California, and greater proportions of winter 
precipitation falling as rain instead of snow [Yoon et al., 2015]. Decrease in snowpack storage, and the 
concentration of streamflow in winter months would increase dry season deficits during periods of high 
irrigation water demand.  
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Atmospheric Rivers 
In California, atmospheric rivers contribute 20–50% of the state’s precipitation and streamflow [Dettinger et 
al., 2011], and therefore play a critical role in West Coast droughts, either by their presence or absence 
[Dettinger, 2013]. The atmospheric rivers delivering water to California show an increasing tendency in GCM 
model runs, which could reduce drought severity, but may also increase flood frequency and severity in 
California under projected climate changes [Dettinger et al., 2011], especially in the region of the Sierra 
Nevada [Das et al., 2011]. 

Drought 
California’s most significant droughts of the past century (by hydrologic dry-ness) were: 1929-1934, 1976-
1977, and 1987-1992. The water years 2012-2014 were California’s driest three consecutive years in terms of 
statewide precipitation, and the drought conditions (combination of record high temperatures and near-
record low precipitation) faced by California may be the worst in the last millennium [AghaKouchak et al., 
2014; Griffin and Anchukaitis, 2014]. Even so, the impact of the 2012-2015 drought would be far worse if not 
for the slightly wet 2010 and significantly wet 2011 preceding the start of the drought [California Department 
of Water Resources, 2015b].  

Drought conditions in California are increasing in intensity and length [Diffenbaugh et al., 2015]. Climate 
change is expected to amplify droughts in California, both because of rising temperatures [Cayan et al., 2010] 
and because of an intensification of ENSO activity [Yoon et al., 2015]. The rise in global temperatures has 
amplified naturally occurring drought conditions in California and has increased the chance of severe 
droughts in the future [Williams et al., 2015], though the main cause of intensification of California droughts 
so far has been natural precipitation variability, not warming [Mao et al., 2015; Seager et al., 2015]. Sea 
surface temperature forcing, for example (a combination of a La Niña event in 2012/2013 and a warm west – 
cool east tropical Pacific SST pattern from 2012-2014), sustained a high pressure ridge over the west coast 
that suppressed precipitation during the three winters from 2011-2014 [Seager et al., 2015; Wang and 
Schubert, 2014]. This recent event indicates that better understanding of the climatological causes of 
persistent North Pacific ridging events might be crucial in anticipating future severe drought in California 
[Swain et al., 2014]. 

California’s most recent drought began in winter 2011-2012, and intensified in winter 2013-2014, a period 
marked by very low winter precipitation, mountain snowpack, and spring runoff [Department of Water 
Resources, 2014b; U.S. Geological Survey, 2014; United States Drought Monitor, 2014]. The drought drew 
down reservoir storage in the state to low levels and threatened the state’s agricultural production, drinking 
water supply, and fisheries [California Department of Fish and Wildlife, 2014; Department of Water 
Resources, 2014a; U.S. Department of Agriculture, 2014]. The drought has included: 1) the lowest three-year 
state-wide precipitation total on record (2012-2014); 2) the most severe values of NOAA’s National Climatic 
Data Center drought indicators (D4, or exceptional drought, first noted across the Salinas Valley and western 
San Joaquin Valley in January 2014 and extending over almost 60% of the state by July 2014) [NOAA, 2014]; 
3) the lowest calendar-year precipitation in the history of much of the state, including San Francisco, 
Sacramento and Los Angeles (2013); 4) the warmest calendar-year temperatures on record (2014); 5) the 
warmest winter on record (2015); 6) highest one-year (water year 2014, 9-12% above average) and three-
year (water year 2012–2014, 7-9% above average1) potential evapotranspiration on record [Williams et al., 

                                                             
1 Potential evapotranspiration was calculated using gridded data of the Global Precipitation Climatology Centre 
(GPCC) [Schneider et al., 2014]; for some grids, potential evapotranspiration for water year 2012-2014 was second 
highest behind water year 2007-2009. However, it should be noted that statewide temperatures in 2015 were the 
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2015]; 6) lowest Palmer Modified Drought Index (PMDI) on record (July 2014, approximately -3) [Diffenbaugh 
et al., 2015]; 7) the lowest recorded April 1st snowpack (2015, 5% of normal) [Dettinger and Anderson, 2015]; 
8) record-low water allocations for State Water Project and federal Central Valley Project contractors 
[California Department of Water Resources, 2015a]. The drought is responsible for an estimated $2.2 billion 
in economic loss from 2013-2014 alone [Howitt et al., 2014], and $2.7 billion from 2014-2015 [Howitt et al., 
2015], and has taken a heavy toll on people and ecosystems [Swain, 2015]. Snowpack has been well below 
normal for each of the four years of the drought. Year 2015 snowpack is significantly less across all 
elevations, and shifted to higher elevations. This shift is likely driven in part by the significantly warmer 
temperatures, which “would lead to less snowfall and more rainfall at lower elevations, and increased 
accumulation season melt across all elevations (with more melt at lower elevations)” [Margulis et al., 2016].  

Previous Studies 

Relevant Studies Conducted to Date 
Recent global (Intergovernmental Panel on Climate Change), National (National Climate Assessment), 
regional (National Climate Assessment for the Southwest Region), and Statewide (3th California Climate 
Change Assessment) climate change assessments have all highlighted climate change driven impacts to water 
supply, water demand, increased flooding and drought, and changes to hydrologic processes. The State 
Water Project has been the focus of many studies conducted by DWR and others, a selection of which 
include:  

• Estimating Historical California Precipitation Phase Trends Using Gridded Precipitation, 
Precipitation Phase, and Elevation Data, DWR Memorandum Report (July, 2014) 

This exploratory study develops and describes a methodology that uses readily available 
research data sets to produce gridded estimates of historical rainfall as a fraction of total 
precipitation for areas comprising the major water-supply watersheds of California. Written by 
Aaron Cuthbertson (DWR), Elissa Lynn (DWR), Mike Anderson (DWR, California State 
Climatologist) and Kelly Redmond (Western Regional Climate Center). 

• Paleoclimate (Tree-Ring) Study (February, 2014) 

New Hydroclimate Reconstructions have been released, using updated tree-ring chronologies for 
these California river basins; Klamath, San Joaquin and Sacramento. The report, prepared by 
the University of Arizona, allows assessment of hydrologic variability over centuries to millennia, 
gives historic context for assessing recent droughts, and can be used in climate change 
research. 

• Hydrological Response to climate warming: the Upper Feather River Watershed, Huang, G., 
Kadir, T., Chung, F. Journal of Hydrology (2012) 

The hydrological response and sensitivity to climate warming of the Upper Feather River Basin, a 
snow-dominated watershed in Northern California, were evaluated and quantified using observed 
changes, detrending, and specified temperature-based sensitivity simulations. 

                                                                                                                                                                                                    
second-highest on record, behind only temperatures for 2014. The year 2015 was not included in Williams [2015] 
and would likely result in record three-year potential evapotranspiration for the period 2013-2015. 

http://www.water.ca.gov/climatechange/docs/Estimating%20Historical%20California%20Precipitation%20DWR%20CWP%207-7-2014%20FINAL.pdf
http://www.water.ca.gov/climatechange/docs/Estimating%20Historical%20California%20Precipitation%20DWR%20CWP%207-7-2014%20FINAL.pdf
http://www.water.ca.gov/waterconditions/docs/tree_ring_report_for_web.pdf
http://dx.doi.org/10.1016/j.jhydrol.2012.01.034
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• Isolated and integrated effects of sea level rise, seasonal runoff shifts, and annual runoff volume 
on California's largest water supply, Jianzhong Wang, Hongbing Yin, Francis Chung. Journal of 
Hydrology. (May, 2011) 

A detailed analysis of climate change impacts on seasonal pattern shift of inflow to reservoirs, 
annual inflow volume change, and sea level rise on water supply in the Central Valley of 
California. 

• Using Future Climate Projections to Support Water Resources Decision Making in California, 
California Climate Change Center (May, 2009) 

The report evaluates how climate change could affect the reliability of California's water 
supply. Click Here to view a Summary Factsheet. 

• Managing an Uncertain Future; Climate Change Adaptation Strategies for California's Water, 
California Department of Water Resources (October, 2008) 

Focuses discussion on the need for California's water managers to adapt to impacts of climate 
change, some of which are already affecting our water supplies. The report proposes 10 
adaptation strategies in four categories. 

• Progress on Incorporating Climate Change into Management of California's Water Resources, 
Climatic Change (March, 2008) 

Published in the March 2008 special issue of Climatic Change -California at a Crossroads: 
Climate Change Science Informing Policy. This is an 18 page condensed version of the original 
350 page 2006 report of the same name. Coauthored by DWR staff.  

• Sacramento-San Joaquin Basin Study, United States Bureau of Reclamation (2016) 

Studies and Other Efforts in Progress as of December 2015 
California Water Plan Update 2018 

Academic studies of climate change impact on the water resources of California 
In addition to the reports just described, an array of academic research has focused on specific aspects of 
climate change impacts on California’s water resources. Previous exercises in hydro-system modeling have 
provided substantial insights for policy-making and public discussion related to water resources management 
in California [Connell-Buck et al., 2011; Harou et al., 2010; Null et al., 2014; Tanaka et al., 2011]. Most of 
these studies have shown that California’s water system, while not impervious, can be quite robust to 
substantial climate disturbances without widespread catastrophic losses, if well managed.  

Connell-Buck et al. [2011] used CALVIN (CALifornia Value Integrated Network), a hydro-economic 
optimization model of California’s statewide water supply system, to compare a warmer climate scenario and 
a warmer-drier scenario centered on 2085 with updated 2050 water demand estimates. Because the study 
based its exploration on a particular run of a particular GCM (A2, model GFDL CM2.1), however, it is limited 
to that model’s representation of a theoretical local climate future, and relies on the model’s potentially un-
realistic representation of natural (inter and intra annual) climate variability. The study is not able, for 
example, to systematically explore the vulnerability of the system to meteorological droughts of varying 
intensity and duration. 

http://www.sciencedirect.com/science/article/pii/S0022169411003222
http://www.sciencedirect.com/science/article/pii/S0022169411003222
http://www.water.ca.gov/pubs/climate/using_future_climate_projections_to_support_water_resources_decision_making_in_california/usingfutureclimateprojtosuppwater_jun09_web.pdf
http://www.water.ca.gov/pubs/climate/climate_change_impacts_summary_sheet__june_2009/climate_change_impacts_summary_sheet_6-12-09_lowres.pdf
http://www.water.ca.gov/climatechange/docs/ClimateChangeWhitePaper.pdf
http://www.water.ca.gov/climatechange/docs/ClimaticChange_DWRarticle_Mar08.pdf
http://www.usbr.gov/mp/SSJBasinStudy/
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Other attempts at evaluating the sensitivity of the California system to climate conditions different from the 
past have been subject to similar limitations in the type and number of model runs. For example, Harou et al. 
[2010] tested the response of the CALVIN model to a single 72-yr synthetic hydrologic time series with half 
the mean historical inflow. The synthetic hydrologic time series was generated by random resampling from 
the 10 driest years of record (1922–1993). The random resampling does not facilitate risk assessment, which 
requires information on the relative likelihood of occurrence of droughts of varying return periods. Null and 
Lund [2006] used an economic engineering optimization model to evaluate the water supply feasibility of 
removing O’Shaughnessy Dam, located in the Hetch Hetchy Valley of Yosemite National Park, by examining 
alternative water storage and delivery operations for San Francisco. The model was run under historical 
hydrology, and a single time series of a warmer drier hydrology with water demands increased to projected 
year 2100 demands. Similarly, Null et al. [2014] used the CALVIN model to evaluate the habitat and economic 
consequences of removing rim dams in California’s Central Valley under historical conditions and a single 
warm and dry climate time series from the Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 model for 
the A2 emissions scenario. 

Rheinheimer et al. [2015] explored the effect of temperature increases on reservoir operating procedures to 
manage downstream temperatures with climate warming of 2, 4, and 6 oC. The study altered stream 
temperatures only and did not adjust water quantity or flow timing. 

Examples of studies that have explored a wider range of possible climate futures are Willis et al. [2011] and 
Groves and Bloom [2013]. In order to understand the effect of climate change on flood operations in the 
Sacramento Basin, Willis et al. [2011] ran downscaled time series from 11 GCMs (each run twice, once for 
CMIP3 scenario A2 and once for B1) through the Army Corps’ Hydrologic Engineering Center Reservoir 
Simulation (ResSim) model (after converting the climate information into reservoir inflow through application 
of the National Weather Service River Forecast System, NWS–RFS).  

Groves and Bloom [2013] used a Robust Decision Making (RDM) approach applied to the Water Evaluation 
and Planning (WEAP) Central Valley Model modeling environment [Joyce et al., 2010] to develop and 
compare robust water-management response packages that could ameliorate the vulnerabilities identified. 
The RDM approach explored the uncertainty associated with the system response to output from 6 GCMs 
(each run twice, once for scenario A2 and B1, as was done by Willis et al. [2011]). Although the ensemble of 
GCM projections (22, in the case of Willis et al. [2011] and 12 in the case of Groves and Bloom [2013]) widens 
the range of future plausible hydrologic conditions relevant to the performance of California water system 
beyond that considered by previous more deterministic studies, they do not necessarily capture the range of 
uncertainty in future climate [Cayan et al., 2010], and they likely underestimate the range of future 
interannual variability, including the potential for multiyear droughts [Brown and Wilby, 2012]. Furthermore, 
like other studies before them, they offer no systematic exploration of system response to the types of 
droughts of varying intensity and duration that might be experienced in the future. 

Whereas these previous studies have tested the response of some aspect of the California water system to 
climate traces different from the historical, the decision scaling [Brown et al., 2012] approach adopted for 
this study allows systematic assessment of the vulnerability of the entire (interconnected and complex) DWR 
water system to a wide range of potential future climate conditions, and quantification of the significance of 
climate shift relative to natural (and climate-change-amplified) variability. The climate response function that 
results from the decision scaling approach identifies the range of climate change within which the 
performance of the system is acceptable, and the critical amount of climate change beyond which 
unacceptable losses of water system performance will occur. An important benefit of this approach is the 
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ability to assign formal probability estimates to the vulnerability space, which allows discussion of risk and 
opportunity (each a function of impact and likelihood) in water system investment.  

Methodology 
DWR’s vulnerability assessment for long-term and persistent hydrologic impacts of climate change focuses on 
impacts to the operation of the State Water Project (SWP), including ecological conditions that dictate 
operating rules. DWR owns and operates the SWP for flood control, maintenance of environmental and 
water quality conditions, water supply, hydropower, and recreation. Thus, analysis of SWP performance 
under climate changed conditions yields an array of impact metrics across all of these areas of concern.   

Water resources system models are the essential tools for exploring the risks to water system performance 
of potential future hydro-climatological and socio-economic conditions [Brown et al., 2015]. In order to 
conduct a stress test that can meaningfully inform the vulnerability of the multifaceted DWR system, a water 
system model is needed that can rapidly simulate the coordinated operations of the Central Valley Project 
(CVP) and SWP. This study has adopted CalLite 3.0, a simplified, faster version of the water system model 
used by DWR, which is called CalSim-II. DWR estimates that the trade-off for the faster speed of CalLite 3.0 is 
an approximate error of 1 percent as compared to a corresponding run of CalSim-II [Islam et al., 2014]. 
CalLite 3.0 requires input including: 

• time series of streamflow in rivers serving the Central Valley,  
• status of regulatory requirements (such as Delta water quality and minimum instream flows), and 
• settings for operational rules (such as water demands and delivery priorities). 

 
As CalLite 3.0 runs, those inputs are used to calculate, at a monthly time step, the resulting system 
conditions, examples of which include: 

• reservoir storage levels, 
• flow in rivers downstream of reservoirs, 
• deliveries to SWP and CVP contractors, and 
• Delta water quality parameters. 

 
CalLite 3.0 receives time series of streamflow as input; however, in order to inform the likelihood climate-
change-related water system vulnerabilities, it is necessary to begin with the most fundamental factors 
available – those describing conditions of meteorological drought, i.e., precipitation and temperature. This 
study uses a weather generator to develop time series of plausible alternative precipitation and temperature, 
which are then sampled systematically in order to explore a wide range of climate change characteristics. An 
advanced hydrologic model (in this case SAC-SMA-DS, described later) translates descriptors of fundamental 
meteorological drought into measures of available water at Earth’s surface. The estimates of available water 
from the hydrologic model become the key inputs to a water system model (CalLite 3.0), which simulates the 
complex interactions of water supply, water demand, regulatory compliance, and operational choices and 
produces measures of water system performance such as water deliveries, reservoir storage, and river flow 
volume. In the case of CalLite 3.0, a number of additional inputs, beyond river flows that could be directly 
provided by the hydrologic model, are required. This requirement necessitated an additional pre-processing 
routine (quantile mapping and water year typing) that involves incorporation of anthropogenic co-factors in 
the operation of water system infrastructure.  
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Figure 7. Modeling Workflow for Climate Change Vulnerability Assessment 

 

When simulated repeatedly, the resulting workflow (Figure 7) allows the exploration of climate change 
impact in response to a wide range of meteorological input. It does this by maintaining proportionate 
anthropogenic response to relative scarcity of available water through propagation of probabilistic 
relationships. 

As a first step in the approach, decision-relevant metrics are identified that can be used to characterize the 
adequacy of system performance. Table 1 lists the decision-relevant metrics used for the DWR climate 
vulnerability assessment (this is only a small subset of the information available, and can be expanded in the 
future to evaluate additional vulnerabilities as needed). The vulnerability of each of the metrics shown in the 
table was evaluated using the stress test approach (repeated simulation of the workflow shown in Figure 7).  

Table 1. Decision relevant metrics 

1 Oroville Storage levels 
  April 1st 
  September 1st 
2 Net Delta Outflow 
  Winter 
  Spring 
  Summer 
  Fall 
3 SWP Deliveries 
  Average Annual 
4 System Shortages 
  Average Annual 

 
System shortages occur when there is not enough water in the system (precipitation, runoff, and storage) to 
meet all of the water demands, regulatory requirements, and health and safety required diversions. In the 
modeling simulations, these shortages typically result in the relaxation of Delta water quality or outflow 
requirements. The shortage amount is the amount of water that would be needed to meet all the 
requirements. Historically, these shortages have been rare but do occur periodically (i.e. 2014 and 2015). 

This analysis focuses on persistent medium and long-term conditions evaluated at a monthly time-step. 
Short-duration extreme precipitation events that cause flooding may also stress water resource 
management but this analysis does not explicitly evaluate flood risk.  

This methodology section describes each step of the modeling workflow, beginning with a description of the 
study area, and proceeding through a description of the weather generator, the hydrologic model, and the 
water system model. 
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Description of Study Area 
The catchment area of the Sacramento and San-Joaquin rivers (Figure 8) provides at least a portion of the 
water supply for about two-thirds of California’s population. About half of California’s average annual 
streamflow flows toward the Sacramento and San-Joaquin Delta, and most of California’s farmland depends 
on water tributary to it [Lund et al., 2010]. The Delta itself is a web of channels and reclaimed islands at the 
confluence of the Sacramento and San Joaquin rivers. It forms the eastern portion of the wider San Francisco 
Estuary, which includes the San Francisco, San Pablo, and Suisun bays, and it collects water from California’s 
largest watershed, which encompasses roughly 45 percent of the state’s surface area [Lund et al., 2010]. It is 
also a center for important components of California’s civil infrastructure, such as electricity, gas transmission 
lines, underground storage of natural gas, and transportation lines, and provides crucial habitat for many of 
California’s fish species that live in or migrate through it (esp., four fish that are listed as endangered or 
threatened pursuant to the federal Endangered Species Act [Mount and Twiss, 2005]). Not inconsequentially, 
the Delta is valued for its aesthetic appeal and support of recreational activities [Lund et al., 2010]. The 
usable water resources for the California Central Valley System can be approximated as the quantity of 
streamflow flowing into the Central Valley from the north-east upgradient regions that are comprised of 
twelve large sub-basins, referred to as the rim sub-basins (Figure 8).  

 

Figure 8. California Central Valley System and Rim Sub-basins. Table inset shows the percent contribution of 
each river to the total delta outflow. Fifteen percent of the total delta outflow is contributed by unshaded areas 

within the red outline. 

The California Department of Water Resources (DWR) and the United States Bureau of Reclamation (USBR) 
oversee the operation of the Central Valley water systems that store and manage water supplies that flow 
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through the Sacramento-San Joaquin Delta, and use the Delta as a conveyance hub (see Figure 9). We 
therefore define the California Central Valley Water System as: the interconnected system of natural river 
channels and man-made facilities that comprise the CVP, owned and operated by the United States Bureau of 
Reclamation (USBR) and the SWP, owned and operated by DWR. The CVP includes more than 13 million acre-
feet of storage capacity in 20 reservoirs.  The CVP provides water to about 3,000,000 acres of irrigated 
agricultural fields, as well as municipal water uses, and rivers and wetland water releases to meet state and 
Federal ecological standards. The SWP includes more than 30 storage facilities, reservoirs and lakes; about 
700 miles of open canals and pipelines, providing water to approximately 25 million Californians and about 
750,000 acres of irrigated farmland. The SWP is not the exclusive water supplier for those it serves, as many 
of its customers supplement the water provided by SWP with local or other imported sources. Local water 
systems are outside of the jurisdiction of DWR. 
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Figure 9. State, Federal, and Local water infrastructure from the California Water Plan [2013] Volume 3, pg 7-6 

Description of Weather Generator 
The representations of internal variability and climate change developed for this study are not driven by GCM 
projections. Rather, hydrologic internal variability is explored by running 13 unique hydrological sequences 
(described below) through the CalLite model. The potential range of climate changes are explored by 
increasing mean temperature in 0.5 degree Celsius (C) increments up to +4.0 degrees C and increasing and 
decreasing average annual precipitation in 10% increments from -30% to +30%. Sea level rise is assumed to 
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increase by 15 cm above 0.5 degrees C and an additional 30 cm (total 45 cm) above 1.5 degrees C.2 These 
changes extend far enough to explore the full range of outcomes predicted by global climate models through 
about 2070. This was accomplished through the development of a weather generator specific to the region of 
DWR interest. 

A weather generator has a number of advantages that distinguish it from sources of climate information that 
originate from global modeling efforts that serve primarily to assess the effects of greenhouse gas emissions 
on climate. A weather generator can be targeted specifically at the local climate characteristics, and altered 
systematically to explore changes to those climate characteristics that are informed by local observed 
changes in known climate drivers, such as atmospheric rivers and sea surface temperature correlations. It can 
also be adjusted to exhaustively probe systems to identify vulnerabilities. For questions of the sensitivity of 
the system to droughts of varying intensity and duration, the weather generator can be used to develop time 
series of climate metrics (e.g., precipitation and temperature) that contain exactly the type of drought 
characteristics of concern. Because the weather generator allows exploration of such a wide range of 
potential climate and natural variability impacts, it significantly reduces the possibility of under-exploring 
important vulnerabilities due to biases and error propagated into the analysis from downscaled GCM 
projections.  

Development of New Climatological Sequences 
The weather generator used for this study [Steinschneider and Brown, 2013] resamples from the Central 
Valley System (CVS) historic record of temperature and precipitation [Maurer et al., 2002] using an Auto-
Regressive Moving Average (ARMA) model that maintains low frequency variability in the mean annual 
precipitation signal. Because it uses a bootstrapping technique to resample from the entire study area 
simultaneously, spatial correlations are maintained perfectly. There are approximately 1000 1/8th degree 
latitude-longitude grid cells within the study area, each of which contains daily climate data from 1950-2010. 
The weather generator was conditioned on annual area-averaged gridded climate data from 1950-2003 
(discarding 2004-2010), as 2003 is the limit of the range of the information available for CalLite 3.0 input.  

Statistically significant (90% confidence) low frequency signals occur at between approximately 12 and 16 
years (Figure 10: Fourier periods 11 = 11.7 years; 12 = 13.9 years; 13 = 16.5 years). The identified 15-year 
periodicity in the precipitation signal is visible in the local paleo-record approximately 500 years into the past, 
but not before that [Dettinger and Cayan, 2014; Meko et al., 2014]. According to Meko et al. [2014]: “Cyclic 
variation, with an average wavelength of about 15 years, is evident in both observed and reconstructed flow 
series over the past 100 years, but is not a long-term feature of the hydroclimate of the basins studied. While 
some observed flow records have large inter-decadal swings, the near-15- year cycle in those records does 
not pass spectral analysis tests for statistical significance.” 

                                                             
2 While sea level is expected to continue to increase above 45 cm as the earth warms, no higher sea level model 
compatible with CalLite 3.0 was available to simulate higher degrees of sea level rise at the time this analysis was 
performed.  It should be noted that system performance at temperatures above 2.5 degrees is likely overly 
optimistic because at such temperatures sea levels would likely be substantially higher than accounted for in the 
model.  
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Figure 10. Wavelet power spectrum for average annual precipitation for the Central Valley catchment (1950-
2003). 

 

Because there is doubt regarding the long-term (and future) persistence of the 15-year periodicity in the 
precipitation of northern California, two sets of five thousand unique realizations were generated to explore 
the potential natural variability within the system, one with the 15-year signal, and one without. After a 
preliminary assessment, very little difference was found between the water system performance when 
forced with climate traces that maintained, and that did not maintain, the 15-year climate signal (see 
Appendix for comparative plots). This inception report describes the methodology used and results obtained 
using only those climatologic traces developed using a Wavelet Autoregressive Model (WARM), designed to 
maintain the 15-year climate signal; however, further exploration of this behavior is warranted, and a plan to 
address the uncertainty related to the system response to the natural climate variability will be described in 
the final section of this report. 

The driest 5-year period within each of the 5,000 runs generated using the WARM, and the ensemble was 
arranged in order from most severe (driest) to least severe (wettest) minimum 5-year precipitation. From this 
ranking, 5 examples of each drought percentile were identified: 1st, 25th, 50th, and 75th. These 20 runs were 
then filtered for those whose mean precipitation over the 50-year period deviated more than +/- 1 percent 
from the historical mean. From the remaining runs, 3 from each quantile (a total of 12) were selected as 
representative hydrological sequences and carried forward (Table 2). The process followed after that used by 
Whateley et al. [2016]. 

Table 2. Hydrologic Sequences with 15 Year Wavelet Signal 
 Climate Trace 
1 Historical 
2-4 1st Percentile 5 year droughts 
5-7 25th Percentile 5 year droughts 
8-10 50th Percentile 5 year droughts 
11-13 75th Percentile 5 year droughts 
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Each of the 13 climatological sequences provides a 50-year simulation of inter-annual climatologic variability 
(natural variability) within the system. These sequences provide the opportunity for an exploration of novel 
drought sequences that are longer and/or more severe than droughts that have been observed in the 
available instrumental record. In total, for each ensemble (with and without the wavelet signal) the 13 
sequences provide exploration of 650 years of precipitation and temperature at California’s current climate 
conditions (i.e., no more climate change than has already been observed today).3 

Application of Climate Shifts 
In order to explore the future effects of climate change each of the 13 sequences was warmed, and 
precipitation was perturbed, incrementally across a wide range of future changes as shown in Table 3. Sixty-
three different combinations of temperature and precipitation change were applied to the climatological 
sequences. The exploration range for temperature and precipitation was informed by the range of changes 
projected for the CVS by the global climate models included in CMIP5 (http://cmip-pcmdi.llnl.gov/cmip5/).  

 
Table 3. Range of Temperature and Precipitation Changes Explored 
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A total of 819 different combinations of natural variability (13), temperature change (9), and precipitation 
change (7) were developed. Each of the 819 combinations is a 50-year time series of temperature and 
precipitation across the Central Valley watershed area (nearly 41,000 years of simulation). It should be made 
clear at this point that the application of climate shifts is probability neutral. Climate shifts are applied for the 
purpose of tracing out the system’s vulnerability space only (for each climate shift, the technique identifies 
possible future climate states that would be of concern to system performance), and do not indicate the 
                                                             
3 What is described here is the original experimental design, which aimed to understand the system response to 
drought severity. Throughout the course of the preliminary work described in this inception report, it became clear 
that a revised climate sampling strategy is needed. At the next phase of this experiment, climate trace sampling 
will emphasize fidelity to the historical climate characteristics (mean, variance, 15-year low frequency variability), 
and give less attention to the characteristics of the worst drought in each climate trace. The revised experimental 
design is described in the final section of this report. 

http://cmip-pcmdi.llnl.gov/cmip5/
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likelihood of the particular shift under consideration. Likelihood concepts are explored in later sections of this 
report. 

Details on Approach to Climate Change Factors 
After consideration of differences in rates of climate change by season and elevation, it was decided to apply 
climate shifts (i.e., changes in precipitation and temperature assigned to the bootstrapped traces of 
historically-similar climate) uniformly across space and time. In order to represent the stronger precipitation 
increases in historically wetter months, precipitation change factors were applied as fractions of historic 
rainfall amount (% changes were applied to historical values). Changes to the precipitation are ranged from 
±30% of the historic average using increments of 10%. Temperature shifts are ranged from 0 to 4°C by 0.5°C 
increments.  

Historical evidence was not strong for a differential application of precipitation shifts to low and high 
altitudes (i.e., an evaluation of changes in precipitation and temperature above and below 2000 m absl did 
not indicate systematically different rates of change at the two elevation bands). Figure 11 summarizes an 
exploration of differential rate of change in precipitation (left) and temperature (right) between early-mid-
20th century (1920-1960) and the end of the 20th century (1980-2011) in the Central Valley system. Hollow 
triangles show changes in high-elevation (>2000 m above mean sea level) grid cells of the Maurer et al. 
[2002] dataset, and solid dots show changes in low-elevation (<2000 m amsl) grid cells. Temperature trends 
show greater scatter, and do not strongly argue for differential application of temperature changes by either 
altitude or season.  

 

Figure 11. Exploration of differential rate of change in precipitation (left) and temperature (right) between early-
mid-20th century (1920-1960) and the end of the 20th century (1980-2011). Hollow triangles show changes in 
high-elevation (>2000 m) grid cells of the Maurer et al. [2002] dataset, and solid dots show changes in low-

elevation (<2000 m) grid cells. 

 

Projected seasonal shifts by mid-century in temperature (Figure 12) and precipitation (Figure 13) in the 
ensemble of CMIP5 GCM runs for the Central Valley system indicate more warming in the summer than the 
winter (though this differential trend is not clearly mirrored in the historical data of Figure 11), and great 
uncertainty in magnitude (and direction) of precipitation change in historically wet months. 
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Figure 12. CMIP5 Projected temperature change: 1971-2000 vs 2036-2065 

 

 

Figure 13. CMIP5 Projected precipitation change: 1971-2000 vs 2036-2065 

 

The historical period from 2002-2011 was approximately 0.33 C warmer than the period from 1922-2001 
(illustrated in Figure 1). Before assigning climate shifts to the bootstrapped traces of historically-similar 
climate, then, it was necessary to add 0.33 C to every year of the bootstrapped historical time series. The 
warmest years in the historical record remain the warmest years in the resampled set, preserving 
relationships between temperature and some of the more poorly understood non-hydrologic CalLite input 
parameters. The imposed 0.33 C shift in historical temperature allows reference to current/recent historical 
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conditions when developing the stress test matrix (as opposed to more abstract reference to mid-20th-
century temperatures at the median of the historical timeseries). 

Description of SAC SMA Hydrologic Model 
Because of its essential role in the quantification of available water on which water allocations to all water 
sectors are based, very high performance is required of the hydrologic model. Hydrologic model residuals 
propagate through the modeling chain and contribute to a cascade of uncertainty [Wilby and Dessai, 2010]. 
This section describes the development of a distributed, physically-based hydrologic model capable of 
supporting subsequent phases of the climate change vulnerability assessment workflow. 

The amount of usable water for the CVS can be approximated as the quantity of streamflow in the twelve 
largest rivers flowing from the north-east into the Central Valley. These are referred to as the rim inflows. In 
order to estimate those twelve stream flows, the Sacramento Soil Moisture Accounting (SAC-SMA) model, a 
lumped conceptual hydrological model employed by the National Weather Service (NWS) of the National 
Oceanic and Atmospheric Administration (NOAA) to produce river and flash flood forecasts for the nation 
[McEnery et al., 2005], was coupled with a river routing model to be suitable for modeling a distributed 
watershed system. It is here referred to as SAC-SMA-DS, denoting the distributed version of SAC-SMA. SAC-
SMA-DS (Figure 14) is composed of hydrologic process modules that represent soil moisture accounting, 
evapotranspiration, snow processes, and flow routing. The model operates on a daily time step and requires 
daily precipitation and mean temperature as input variables. 

As illustrated in Figure 8, the coverage area of the hydrologic model includes all major tributaries to the 
northern California water system (esp., the Sacramento and San Joaquin watersheds). The contributing flow 
is summarized in the table insert, showing the relative importance of the Shasta and Oroville sub-basins. 

SAC-SMA-DS includes the Snow 17 module [Anderson, 1976] to account for snow and ice dynamics within the 
12 rim sub-basins. In this study the hydrologic modeling domains for 12 rim sub-basins are spatially 
disaggregated using climate input grids of 1/8o resolution and 200 m interval elevation bands corresponding 
to the meteorological source data [Maurer et al., 2002]. The runoff from each disaggregated area is weighted 
by its area fraction within the basin to obtain the total basin-wide runoff. 

The overall model structure of SAC-SMA-DS is described in Figure 14. More details on the model components 
are provided below by focusing on the descriptions for the modules additionally introduced to develop the 
distributed version of SAC-SMA. 
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Figure 14. Schematic of distributed hydrologic model 

 

Hamon Evapotranspiration Calculation 
The potential evapotranspiration (PET) is derived based on the Hamon method [Hamon, 1961], in which daily 
PET in millimeters (mm) is computed as a function of daily mean temperature and hours of daylight: 

PET = Coeff ∙ 29.8 ∙ Ld ∙
0.611∙exp�17.27∙ T

(T+273.3)�

T+273.3
  (2) 

where, Ld is the daylight hours per day, T is the daily mean air temperature (oC), and Coeff is a bias correction 
factor. The hours of daylight is calculated as a function of latitude and day of year based on the daylight 
length estimation model suggested by Forsythe et al. [1995]. 

In-grid Routing: Nash-Cascade Unit Hydrograph 
The within-grid routing process for direct runoff is represented by an instantaneous unit hydrograph (IUH) 
[Nash, 1957], in which a catchment is depicted as a series of N reservoirs each having a linear relationship 
between storage and outflow with the storage coefficient of Kq. Mathematically, the IUH is expressed by a 
gamma probability distribution: 

u(t) = Kq
Γ(N) �Kqt�N−1exp�−Kqt� (3) 

where, Γ is the gamma function. The within-grid groundwater routing process is simplified as a lumped linear 
reservoir with the storage recession coefficient of Ks.  
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River Channel Routing: Linearized Saint-Venant Equation 
The transport of water in the channel system is described using the diffusive wave approximation of the 
Saint-Venant equation [Lohmann et al., 1998]: 

∂Q
∂t

+ C ∂Q
∂x
− D ∂2Q

∂2x2
= 0 (4) 

where C and D are parameters denoting wave velocity and diffusivity, respectively. 

Water Resources System Model 
CalLite 3.0 is the water resources system model used in this study to assess impacts.  It is a screening level 
planning tool developed by DWR and USBR for analyzing CVS water management alternatives. CalLite is the 
faster, streamlined version of CalSIM-II [Draper et al., 2004], designed to be accessible to policy and 
stakeholder demands for rapid and interactive policy evaluations. CalSIM-II, driven by the Water Resource 
Integrated Modeling System (WRIMS model engine or WRIMS) is “a generalized water resources modeling 
system for evaluating operational alternatives of large, complex river basins [that] integrates a simulation 
language for flexible operational criteria specification, a [mixed integer] linear programming solver for 
efficient water allocation decisions, and graphics capabilities for ease of use” [California Department of 
Water Resources and United States Bureau of Reclamation, 2011]. As explained by Draper et al. [2004], “for 
each time period, the solver maximizes the objective function to determine a solution that delivers or stores 
water according to the specified priorities and satisfies system constraints. The sequence of solved [Mixed 
Integer Programming] problems represents the simulation of the system over the period of analysis… 
[CalSim-II] also allows the user to specify objectives using a weighted goal-programming technique pioneered 
by Charnes and Cooper [1961].” 

CalLite, a schematic of which is shown in Figure 15, represents reservoir operations, SWP and CVP operations 
and delivery allocation decisions, existing water sharing agreements, and Delta salinity responses to river 
flow and export changes on a monthly timestep. CalLite can also represent the effect on the water system of 
land use changes and sea level rise, features of particular use to this study. CalLite 3.0, released in 2014, has 
796 input parameters, and approximately 240 additional data tables that store all relational data, such as 
reservoir area-elevation-capacity data, wetness-index dependent flow standards, and monthly flood control 
requirements [California Department of Water Resources and United States Bureau of Reclamation, 2011; 
Draper et al., 2004]. Output includes water supply indicators, environmental indicators, and water use 
metrics. 
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Figure 15. CalLite schematic 

 

Generation of Inputs to CalLite 
CalLite’s 796 input parameters consist of: unimpaired inflow, impaired inflow, return flow, base flow, 
groundwater inflow, outflow, and pumping, water demands, evaporation rates, precipitation rates, diversion 
requirements, delivery patterns, release hydrographs, water quality, storage levels, withdrawals, 
environmental triggers, and other variables. In order to perform a climate change stress test on the system, a 
methodology was needed to vary the 796 input time series in an internally consistent manner. 

Of the 796 CalLite inputs, 39 are hydrologic inflows to the CVS. These 39 inflows consist of the 12 rim basin 
inflows, 9 “unimpaired” local inflows, and 18 “other” local inflows. Internal consistency in these hydrologic 
inflows can be maintained using the weather generator in combination with the SAC-SMA-DS hydrologic 
model. Further, most of the input variables were found to have a relatively small impact on model output. Of 
the 796 inputs, only 20 (the 12 rim basins plus 8 of the 9 unimpaired local inflows) of the 39 inflow variables 
and 11 of 18 accretion/depletion (AD) terms exerted strong influence on model output.  

The SAC-SMA-DS hydrologic model was used to simulate inflows for the 12 rim sub-basins (Table 4, and 
Figure 16 left), the 9 unimpaired inflows (Figure 16 right), and the location of 11 physical stream gages 
related to the 12 rim inflows (Figure 16 center). These flows represent the great majority of the total inflows 
to the CVS. As shown in Figure 16, the locations of the 11 stream gages in SAC-SMA-DS Calibration Set II are 
nearly identical to the locations of the basin outlets for the 12 rim inflows in Calibration Set I. This is because 
the historical data for the CalLite 3.0 rim inflows are derived from the 11 physical stream gages described in 
Calibration Set II. Because it was important to validate the workflow shown in Figure 7 relative to the 
baseline run of the CalLite 3.0 simulation model, the SAC-SMA-DS model was calibrated directly to the 
streamflow in the CalLite 3.0 package (Calibration Set I). This is different than calibrating to historical 
observations, as the streamflow pre-loaded in the CalLite 3.0 package is the output of a previous (Variable 
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Infiltration Capacity, VIC, Model) hydrologic modeling project performed for the CVS. To evaluate the quality 
of the original VIC hydrologic model output, and to gain the confidence associated with validation relative to 
historical observations, it was necessary to calibrate the SAC-SMA-DS directly to the observations at the 11 
physical gages of Calibration Set II. The results of Calibration Set II were not used as input to CalLite 3.0, but 
were used in determination of water year type classification, as described below. 

Table 4. Twelve Major Rim Inflows to the CalLite Model 

American River (into Folsom Lake) 
Merced River (into Lake McClure) 
Stanislaus River (into New Melones Lake) 
San Joaquin River (into Millerton Lake) 
Mokelumne River 
Calaveras River (into New Hogan Lake) 
Feather River (into Lake Oroville) 
Tuolumne River into (New Don Pedro Reservoir) 
Sacramento River (into Shasta Reservoir) 
Trinity River (into Trinity Reservoir) 
Yuba River (into New Bullards Bar) 
Clear Creek (into Whiskeytown Reservoir) 
 

Calibration Set III was developed when it was realized that Calibration Set I and Calibration Set II failed to 
account for a substantial portion (especially south and west) of the total CVS basin area shown bounded in 
red in Figure 16. The 9 unimpaired inflow basins of Calibration Set III add information on CVS sub-basins that 
are rain-dominated (as opposed to many of the 12 rim inflows, which are largely snow-dominated), and 
accounts for a substantial portion of the rain that falls within the CVS system. The 9 basins of Calibration Set 
III are referred to as “unimpaired inflows” as they are the result of a modeling project that estimated the 
runoff “that would have occurred had water flow remained unaltered in rivers and streams instead of stored 
in reservoirs, imported, exported, or diverted” for 24 Central Valley sub-basins and the Sacramento-San 
Joaquin Delta for October 1920 through September 2003 [Bay-Delta Office, 2007]. Whereas Calibration Set I 
was used as direct input to CalLite 3.0 and Calibration Set II was used principally as a check on Calibration Set 
I and in the development of water year type classification, Calibration Set III was used principally to add 
information to the process for generating other, non-hydrologic inputs to CalLite 3.0.  
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Figure 16. Maps of three calibration sets for the application of SAC-SMA-DS to the CVS 

 

The other 27 local inflow inputs to CalLite, which make up the remaining portion of the system’s total inflows 
were not directly simulated, because: 1) acquisition of unimpaired natural flow for those rivers was not 
straightforward; and 2) the increasing computational effort was not justified by the increase in model 
accuracy (given the small fraction of total flow contribution). The AD terms could not be simulated using a 
hydrologic model because they are aggregations of hydrologic, management, and other anthropogenic 
behaviors that cannot be approximated as unimpaired catchment inflows. 

The remaining 757 non-hydrologic time series fit into one of three categories: 1) constant value; 2) time 
series with several discrete steps, or recurring values; 3) or continuously varying time series. In both the 
discrete recurring value time series and continuously varying time series the values tended to vary as a 
function of hydrology (wetness or dryness of month), either directly (correlated to one of the 12 rim inflows 
of Calibration Set I or one of the 9 additional unimpaired inflows of Calibration Set III), or by way of one of 
two streamflow indices called “water year type”, developed using Calibration Set II. The Sacramento and San 
Joaquin Water Year Type indices classify the two major watersheds of the CVS into one of five states: “wet” 
classification, two “normal” classifications (above and below normal), and two “dry” classifications (dry and 
critical). Information regarding the DWR method of water year classification can be found at 
http://cdec.water.ca.gov/cgi-progs/iodir_ss/wsihist. 

In order to evaluate the goodness of fit of each CalLite input parameter to the DWR water year types, 60 
water year type values were computed (5 water year types x 12 months) for each of the Sacramento and San 
Joaquin Water Year Type Indices. The average value of each CalLite input parameter was calculated for each 
month of each water year type. For the purpose of exploration of correlation with the water year types, then, 
the raw time series of each input parameter was regressed against a discrete time series (with 60 unique 
values) representing the water-year-type-average in each month of each year of the historic record.  

Seven hundred nineteen of the non-rim-inflows were better correlated to a water year type index (either the 
Sacramento or the San Joaquin index) than they were to one of the 21 particular rim/unimpaired inflow 
streams (Table 5). Those 719 CalLite input parameters were therefore associated with one of the two water 
year type indices and varied accordingly. Most of the remaining CalLite input parameters were associated 
with a particular rim inflow and varied in response to variations in that stream using a quantile mapping 

http://cdec.water.ca.gov/cgi-progs/iodir_ss/wsihist
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technique. The values of a few of the CalLite input parameters were generated by way of special processes 
unique to those inputs. This section describes the process for quantile mapping, water year typing, and the 
application of “special conditions”. 

Table 5. R Squared Correlations for 31 most important inputs 

CalLite Input Parameter Correlation 
Coefficient 

Best Fit 

I_NHGAN.FLOW.INFLOW 1 I_NHGAN 
I_SHSTA.FLOW.INFLOW 1 I_SHSTA 
I_FOLSM.FLOW.INFLOW 1 I_FOLSM 
I_OROVL.FLOW.INFLOW 1 I_OROVL 
I_MCLRE.FLOW.INFLOW 1 I_MCLRE 
I_WKYTN.FLOW.INFLOW 1 I_WKYTN 
I_PEDRO.FLOW.INFLOW 1 I_PEDRO 
I_MLRTN.FLOW.INFLOW 1 I_MLRTN 
I_LEWISTON.FLOW.INFLOW 1 I_TRNTY 
I_TRNTY.FLOW.INFLOW 1 I_TRNTY 
I_MELON.FLOW.INFLOW 1 I_MELON 
I_YUBA.FLOW.INFLOW 1 I_YUBA 
I_MOKELUMNE.FLOW.INFLOW 1 I_MOKELUMNE 
I_ESTMN.FLOW.INFLOW 0.99 ChowchillaRiver 
I_HNSLY.FLOW.INFLOW 0.99 FresnoRiver 
AD_REDBLF.FLOW.ACCRDEPL 0.92 StonyCreek 
AD_MOKELUMNE.FLOW.ACCRDEPL 0.9 CosumnesRiver 
I_CALAV.FLOW.INFLOW 0.78 PutahCreek 
AD_SACFEA.FLOW.ACCRDEPL 0.77 StonyCreek 
AD_CALAVERAS.FLOW.ACCRDEPL 0.75 I_NHGAN 
AD_YOLOBP.FLOW.ACCRDEPL 0.7 PutahCreek 
AD_SJR_PULSE_V.FLOW.CHANNEL 0.65 I_MOKELUMNE 
AD_SJR_V.FLOW.ACCRDEPL 0.65 I_MOKELUMNE 
AD_SJR_VAMP_V.FLOW.CHANNEL 0.64 I_MOKELUMNE 
AD_YUBFEA.FLOW.ACCRDEPL 0.46 CacheCreek 
I_MDOTA.FLOW.INFLOW 0.39 I_MELON 
I_TUOL.FLOW.INFLOW 0.27 CalaverasRiver 
I_KELLYRIDGE.FLOW.INFLOW 0.26 SacWYT 
I_KERN.FLOW.INFLOW 0.25 I_MLRTN 
AD_WILKNS.FLOW.ACCRDEPL 0.24 SacWYT 
AD_SACAME.FLOW.ACCRDEPL 0.1 SacWYT 
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Creating Synthetic Time Series by Quantile Mapping Method 
In parallel, each of the remaining 784  input time series were synthetically generated by quantile mapping the 
historical unimpaired flow time series for each of the DWR 24 unimpaired flow basins (as modeled by DWR 
Bay Delta Office) to the historical values of each time series in the CalLite input file. 

The CalLite input parameters that correlated most closely with one of the rim inflows were paired with that 
inflow. For example, Figure 17 shows the correlation that two historical local inflows have (I_BRANANIS and 
I_MDOTA) with the historical inflows of the 12 rim basins and the rim inflows of I_NHGAN and 
I_MOKELUMNE are selected as the best pairs of I_BRANANIS and I_MDOTA respectively. The pairs of local 
and rim inflows determined in this way are used in the quantile mapping procedure to generate new local 
inflows corresponding to new rim inflows. The quantile mapping procedure is described using an example in 
the following section. Table 6 shows pairs of local and rim inflows determined for all local inflows. 
Consequently, 6 of the rim inflows are selected based on which inflows are quantile-mapped. 

 

Figure 17. Pearson correlation coefficients of two historical local inflows (I_BRANANIS and I_MDOTA) with 
historical 12 rim inflows.  

 

http://www.swrcb.ca.gov/waterrights/water_issues/programs/bay_delta/bay_delta_plan/water_quality_control_planning/docs/sjrf_spprtinfo/dwr_2007a.pdf
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Table 6. Pairs of rim flows and local inflows determined by correlation. Blue bold text in parentheses represent 
the values of Pearson’s correlation coefficient and red bold text represent contribution of local inflows to the 
total system inflows. 

Rim Inflow Nodes Local Inflow Nodes 

I_NHGAN 

I_STANGDWN(0.99, 0.01%), I_NIMBUS(0.94, 0.03%), I_ESTMN(0.91, 0.28%), 
I_EASTBYP(0.90, 0.76%) 
I_CALAV(0.87, 0.05%), I_HNSLY(0.87, 0.33%), I_TERMINOUS(0.83, 0.22%), 
I_BRANANIS(0.79, 0.32%) 
I_STOCKTON(0.77, 0.06%), I_MEDFORDIS(0.76, 0.18%), I_HOOD(0.72, 0.05%), 
I_SACSJR(0.72, 0.02%), I_CONEYIS(0.71, 0.10%), I_MARSHCR(0.61, 0.13%), 
I_SJRMS(0.57, 0.09%), I_SJRMSA(0.57, 0.09%), I_TUOL(0.42, 0.79%) 

I_MELON I_SJRMAZE (0.58, 1.45%), I_SJRSTAN (0.58, 0.08%), I_MERCED1B (0.51, 0.33%) 
I_MLRTN I_KERN (0.49, 0.10%), I_STANRIPN (0.32, 0.40%) 
I_FOLSM I_KELLYRIDGE (0.38, 0.50%) 

I_MOKELUMNE I_MDOTA (0.60, 0.58%) 
I_TRNTY I_LEWISTON (0.99, 0.03%) 

 

Here, we provide a detailed description on the quantile mapping procedure with an example for the local 
inflow of I_NIMBUS. For the I_NIMBUS, the rim inflow of I_NHGAN is selected as the best correlated inflow, 
with the correlation coefficient of 0.94. The quantile mapping procedure starts with fitting those two inflows 
to specific probability distributions. In this study, we employed two types of distributions: 1) empirical 
probability based on the Weibull plotting position, and 2) theoretical probability based on 2-parameter 
Gamma distribution. How the quantile mapping works for the I_NIMBUS with selected rim inflow I_NHGAN is 
illustrated in Figure 18. For those two inflows, both the empirical and theoretical distribution are fitted as 
shown in Figure 18; red line with asterisk dots represent the fit by the Weibull plotting position and blue line 
by the Gamma distribution. The red continuous empirical probability line is formed by doing a linear 
interpolation between values of asterisk dots. As shown in the figure, the new rim inflow lead us to the new 
local inflow value through those two quantile plots of local and rim inflows. The quantile mapping procedure 
is simply summarized in two steps: 1) find a quantile (i.e., non-exceedance probability) for the new rim 
inflow, 2) find the value of local inflow that corresponds to the quantile of the rim inflow. In our quantile 
mapping procedure, empirical distributions are used as long as new inflows are within historically observed 
range. In case the new inflows are beyond the historical range, Gamma distribution fit is used. This quantile 
mapping procedure is conducted on a monthly basis to take into account the seasonal variability of inflows. 
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Figure 18. Quantile mapping procedure applied to example California sub-basin  

 

Creating Synthetic Time Series by Water Year Type Method 
For those CalLite input parameters that correlated most closely to one of the two water year type 
classifications (Sacramento or San Joaquin), a discrete, 60-value mapping procedure was then used.  

As described by Null and Viers [2013], “water year classification systems and hydrologic indices are common 
for water planning and management because they simplify complex hydrology into a single, numerical metric 
that can be used in rule-based decision making.” Water year type classification systems have been applied to 
development of drought indices throughout the United States [e.g., Heim, 2002; Quiring, 2009], and to such 
purposes as hydropower reservoir management in Chile [Olivares et al., 2015]. Explicit linking of water 
system operations to water year type provides the opportunity to bring water system operations in better 
synchronicity with the needs of aquatic ecosystems, which depend on patterns of hydrologic variability for 
the integrity of their lifecycles [Richter et al., 1997].  

The sixty values for each input variable were calculated using the historical observed dataset. The historical 
dataset was sorted by historical water year type classification and an average value for each month-water 
year combination was calculated. To generate the synthetic input time series, the water year type was 
calculated based on the synthetic hydrologic input time series using the appropriate water year calculation 
methodology—which is a combination of rim inflows4. The historical calculated sixty values were then 
mapped into the synthetic time series input variable according to the water year type and month 
combination. Figure 19 shows three variables that show strong correlations with the San Joaquin Water Year 
Type classification. 

 

                                                             
4 http://cdec.water.ca.gov/cgi-progs/iodir/WSIHIST  

http://cdec.water.ca.gov/cgi-progs/iodir/WSIHIST
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Figure 19. Input variables with strong correlation to San Joaquin Water Year Type classification-historical 
observed data shown. 

Parameter-Specific Generation of CalLite Input (i.e., Special Cases) 
Two AD terms, AD-Wilkins and AD-SACAME, had a large impact on model performance and did not correlate 
well to rim/unimpaired inflow or water year type averages. Additional efforts were made to create new 
versions of these time series. 

AD-Wilkins 
The AD-Wilkins time series contained very large negative values. Through visual inspection this time series 
was identified as containing weir operations. Tisdale is likely the weir contained within the AD Wilkens time 
series. The design capacity of the Tisdale weir is 38,000 cfs which seems reasonable when compared to the 
largest negative values contained in the AD Wilkens time series (Figure 20). AD Wilkins correlated well to 
unimpaired flow from the Bay Delta Office’s Shasta unimpaired flow basin. When flow from the Shasta basin 
exceeds 13,300 cfs it was assumed that water begins to exit the Sacramento River via a weir. Two linear 
equations were developed for AD Wilkins: one for conditions in which Shasta flow is less than 13,300 cfs, and 
another when flow exceeds 13,300 cfs (Figure 20).  

 

http://cdec4gov.water.ca.gov/cgi-progs/products/Weir_Operations_Schematic.pdf
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Figure 20. AD_Wilkins: Correlation with Shasta flow 
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AD-SACAME  
The AD-SACAME input term did not correlate well with any of the methods described above for synthetically 
generating the variable time series. After an exhaustive search for a more skillful method of synthesizing the 
variable it was decided to use the Sacramento water year type classification average. It should be noted that 
the AD-SACAME time series of historical observed values contains some extremely negative values at the end 
of the time series (Figure 21) which call into question the assumptions used to create the CalSim terms on 
which the AD SACAME time series is based.  

 

 

Figure 21. AD_SACAME historical behavior 

 

Sea Level Rise Assignment for CalLite 3.0 
At the time this project was initiated, only 3 existing sea level rise options existed within CalLite: 0 cm, 15 cm, 
and 45 cm. Therefore, the sea level rise implementation scheme adopted for this study made use of the 
available tools. Using [National Research Council, 2012], sea level rise along the California Coast south of 
Cape Mendocino was plotted as a function of year (Figure 22).  With this relationship between future year 
and expected levels of sea level rise, and values for projected global temperature increases by year from 
Figure 11.9 of the Working Group I contribution to the Fifth Assessment Report of the Intergovernmental 
Panel on Climate Change [IPCC, 2014], curves were calculated for sea level rise along the California Coast 
south of Cape Mendocino as a function of temperature. 
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Figure 22. Estimates of Sea Level Rise by Degree C 

 
The sea level rise assignment for CalLite 3.0 was thus made according to the logic shown in Table 7, which 
approximates and discretizes to the three sea level rise steps available within the model our best 
understanding of the level of sea level rise that would be expected at each increment of temperature change. 
Each time a climate trace was run through CalLite 3.0, the degree of temperature shift it received (as 
described in reference to Table 3) was noted, and the corresponding sea level rise function within the model 
was set according to Table 7. 

 

Table 7. Sea Level Rise Discretization within CalLite 3.0 

Temperature change relative to 
recent historical 

Sea level rise relative to recent 
historical 

0 C 0 cm 
0.5-1.0 C 15 cm 
≥ 1.5 C 45 cm 
 

Model Verification 

Weather Generator Performance 
Figure 23 summarizes the performance of the WARM weather generator in terms of its reproduction of the 
statistics of annual precipitation. On power spectrum, black line is observed power spectrum, the red is the 
90% significance level, the blue is power mean spectrum of simulated runs, and the grey polygon block is 95% 
confidence interval around observed power spectrum. Figure 23 shows that the 5000 runs generated capture 
the signal approximately, with some of the generated runs meeting or exceeding the 90% confidence interval 
for power spectrum at approximately 15 years, and some falling below the historical power spectrum at 15 
years. The boxplots of mean, standard deviation, and skew show that the 5000-run ensemble maintains 
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mean very well (red dot is mean of historic record; blue dot is ensemble mean; boxplot presents percentiles 
of 5000-trace ensemble), and under-represents the historic standard deviation and skew.  

 

 

Figure 23. Performance of WARM Weather Generator WARM – Annual Precipitation 

 

Table 8 summarizes the performance the twelve weather generator traces selected for use in this study. The 
twelve traces are listed in order of the increasing non-exceedance probability of the total precipitation of the 
worst 5-year drought contained in each. All of the selected runs reproduce historical mean annual 
precipitation within ±1%, and historical standard deviation of annual precipitation within ±18%. Half of the 
selected runs capture the 15-year low frequency variability, as quantified in the 90% significance level for the 
historical power spectrum. Generally, those selected runs that contained severe (low precipitation non-
exceedance probability) droughts, also captured the 15-year low frequency climate signal. 

Ideally, the standard deviation of the selected runs would be within ±5-10% of the historic. This was not 
controlled for in the preliminary stages of this study, but will be controlled for going forward. A tight filter will 
not be used for skew, as skew is too noisy a metric of variability and can be dominated by a single outlier 
measurement. Instead, greater attention will be given to maintenance of the 15-year low frequency climate 
signal, and by so doing, the expectation is that skew will fall reasonably in line with the historical. 
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Table 8. Statistics of the 12 WARM Weather Generator Runs Selected for Drought Characteristics 

Empirical 
percentile of 
worst 5-yr drought 
in trace 1st  1st  1st  25th  25th  25th 50th  50th  50th  75th  75th  75th  

WG trace number 824 871 2104 1653 3075 4623 3148 3208 4038 3408 4214 4259 
% dev trace mean 
from historic mean 

-0.22 0.27 -0.78 0.99 0.59 -0.28 0.66 0.67 -0.14 0.95 0.87 0.51 

% dev trace stand. 
dev. from historic 
st. dev. 

-17.84 -9.90 13.85 9.22 8.53 -8.05 -1.18 -3.11 -2.29 5.68 -14.06 -13.90 

15-yr Power 
Spectrum 90% 
sig? 

Y Y Y Y nearly Y N N N N N N 

 

During the worst five-year drought from 1915-2010, which occurred from 1928-1932, the average annual 
precipitation was 453 mm/yr. During the worst five-year drought from 1950-2003, which occurred from 
1986-1990, the mean annual precipitation was 510 mm/yr. The mean annual precipitation in the 1st 
percentile drought sampled from the ensemble of 5000 WARM runs was 383 mm/yr. 

Hydrologic Model Performance 
The SAC-SMA-DS applied to reproduce historical inflows of the 12 rim sub-basins shows very good 
performance as shown in Table 9. The performance metrics of NSE evaluated on the monthly simulated 
streamflow show values of above 0.9 for all except for the sub-basin Mokelumne, for which NSE is 0.8. 
Considering the recommendation of Moriasi, et al. [2007] that model simulation can be judged as satisfactory 
if NSE > 0.50, these simulation results are highly satisfactory and will greatly reduce the errors stemming 
from the hydrology. 

Table 9. Hydrologic model performance by sub-basin 

Sub-basin Nash Sutcliffe 
Folsom 0.96 
Merced 0.95 
Stanislaus 0.91 
San Joaquin 0.92 
Mokelumne 0.80 
Calaveras 0.96 
Oroville 0.95 
Tuolumne 0.94 
Shasta 0.97 
Trinity 0.91 
Yuba 0.91 
Whiskytown 0.95 
 

The second test of the hydrologic model was of its ability to reproduce historical water year type 
classification based on the flow of rim-inflow rivers, using an algorithm designed to reproduce the water year 
classification system used by DWR. The combined hydrologic model and water year classification algorithm 
was shown to successfully match water year type for every year of the historic record to the DWR method of 
water year classification (http://cdec.water.ca.gov/cgi-progs/iodir_ss/wsihist).  

http://cdec.water.ca.gov/cgi-progs/iodir_ss/wsihist
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System Model Performance 
Figure 24 through Figure 26 show sample output of CalLite validation run selected to demonstrate the skill of 
the model workflow (Figure 7) in reproducing historical CalLite output for each of the decision relevant 
metrics described in Table 1. Figure 24 presents the validation for Total North of Delta Storage, of which 
Oroville reservoir storage is a part. Figure 25  presents the validation for delta outflow. Figure 26 presents the 
validation for SWP deliveries.  

The validation is a perfect reproduction prior to 1950, as no reliable climate data were available for 
development of weather generator traces before that time. Weather generator traces were used to develop 
hydrologic traces for development of input to CalLite in the period from 1950-2003. 

 

 

 

Figure 24. Validation of CalLite stress test modeling workflow for Total North of Delta Storage. Top: Scatterplot 
fit of annual averaged validation trace values to default trace values. Bottom: Default (blue) and validation (red) 

trace monthly Total North of Delta Storage showing perfect fit before 1950 and differences after 1950. 
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Figure 25. Validation of CalLite stress test modeling workflow for Delta Outflow. Top: Scatterplot fit of annual 
averaged validation trace values to default trace values. Bottom: Default (blue) and validation (red) trace 

monthly Delta Outflow showing perfect fit before 1950 and differences after 1950. 
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Figure 26. Validation of CalLite stress test modeling workflow for SWP Annual Deliveries. Top: Scatterplot fit of 
annual averaged validation trace values to default trace values. Bottom: Default (blue) and validation (red) trace 

monthly SWP deliveries showing perfect fit before 1950 and differences after 1950. 

Risk Assessment Results 

Exposure 
DWR’s operation of the SWP is exposed to climate changed conditions throughout the state. In the 
watersheds from which water supplies originate, higher temperatures and changes in precipitation are 
expected to change the availability of water. In the Sacramento-San Joaquin Delta, water supplies interact 
with the Delta’s complex hydrology, which is influenced by sea level, tides, and flows from several rivers. 
Throughout the SWP’s service areas, demand for SWP water supplies will be affected by higher temperatures 
and changing precipitation. 

Exposure to climate changes for these areas has been estimated using data from an ensemble of projections 
from the CMIP5 to develop probabilistic climate information. While the ensemble of models indicates a range 
of future outcomes in temperature and precipitation, we can infer conditional probabilities for temperature 
and precipitation change by plotting the bivariate normal distribution of the projected changes of the 
models. Figure 6 presented the conditional climate probability density for climate changes at 2050. By 
expressing the range of climate changes in the future as probabilistic possibilities a deeper understanding of 
the range of potential exposures is possible. In Figure 6, deeper blue colors represent higher agreement 
among the GCMs about future conditions, lighter blue colors represent future conditions that are predicted 
by fewer models, but that are still considered possible future outcomes.   
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Sensitivity 
The decision scaling approach described above was used to explore system performance for each of the 
metrics listed in Table 1. For each metric a system performance response surface was generated, which 
averages across the twelve climate traces described in Table 2 (the statistics of which were presented in 
Table 8) and the historical trace. The system performance response surfaces describe how the system 
performs over the range of temperature and precipitation changes. See insert box: “Understanding System 
Response Surfaces” for additional information on interpreting the information in these graphics. 

The response surface describes the sensitivity of the SWP system to changes in climate. On the response 
surface, the black line represents performance at historical levels; warm colors represent performance worse 
than historical levels while cool colors represent performance better than historical levels. Changes in color 
represent sensitivity to a change in climate. 

Vulnerability and Risk 
Exposure and sensitivity to climate changes have been described. By combining exposure and sensitivity with 
vulnerability and risk, probabilistic estimates for each of the selected performance metrics can be developed. 
In this step cumulative density functions (cdf’s) and probability density functions (pdf’s) are developed, which 
weight each run by the likelihood of its climate change space (and assuming every year within the trace to be 
equally likely, and a product of random internal variability represent-able as white noise). The year 2050 
conditional climate probability density is summarized in Table 10. Table 10 is developed by assigning a 
bivariate normal distribution to the shifts in mean annual temperature and precipitation of the ensemble of 
CMIP5 GCM output for the years 2035-2065 relative to the same for 1970-2000. 

 

Table 10. Conditional Climate Probability Density of each Climate Change Shift, 1970-2000 to 2035-2065 

Temp. 
Increase 

Over 
Histor. 

4 1.68E-10 7.78E-08 5.17E-06 4.92E-05 6.72E-05 1.32E-05 3.69E-07 
3.5 8.38E-09 3.15E-06 1.69E-04 1.31E-03 1.45E-03 2.30E-04 5.22E-06 

3 1.83E-07 5.58E-05 2.44E-03 1.52E-02 1.37E-02 1.76E-03 3.24E-05 
2.5 1.76E-06 4.35E-04 1.54E-02 7.79E-02 5.67E-02 5.90E-03 8.82E-05 

2 7.43E-06 1.49E-03 4.26E-02 1.75E-01 1.03E-01 8.71E-03 1.05E-04 
1.5 1.38E-05 2.23E-03 5.18E-02 1.72E-01 8.23E-02 5.63E-03 5.53E-05 

1 1.12E-05 1.47E-03 2.76E-02 7.45E-02 2.88E-02 1.60E-03 1.27E-05 
0.5 3.98E-06 4.24E-04 6.46E-03 1.41E-02 4.43E-03 1.99E-04 1.28E-06 

0 6.23E-07 5.37E-05 6.64E-04 1.18E-03 2.99E-04 1.09E-05 5.69E-08 
 0.7 0.8 0.9 1 1.1 1.2 1.3 

Precipitation (relative to historical) 
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Insert Box 5.2: Understanding the Response Surfaces. 
For each performance metric, the response surface shows the performance that would be expected for various 
combinations of change in precipitation, warming, and sea level associated with warming. In the example below, 
SWP Annual Deliveries are shown. The value at 0 degrees warming and 0 change in precipitation essentially 
represents current conditions (i.e., the long-term average of SWP Annual Deliveries that would be expected if 
climate conditions remained stable at today’s levels). This level of performance is referred to as the “current 
conditions estimate” and represents the simulated long-term average system performance over all 13, 50-year 
hydrological sequences with no climate warming beyond what has already occurred. A black line extends up and 
to the right from 0 degrees warming and 0 change in precipitation. This line represents system performance at 
the same level as the current conditions estimate. In other words, current performance levels can be maintained 
for the given metric at these combinations of warming and precipitation change. For the SWP Average Annual 
Deliveries metric, the current conditions estimate is 2.71 MAF. This same level of average annual deliveries could 
be maintained at 2 degrees C of warming coupled with about 13% higher precipitation rates or 4 degrees C 
warming and about 20% higher precipitation rates. Blue colors represent performance better than current 
conditions and orange/red colors represent performance worse than current conditions.  

 
Each color band represents consistent system performance across a range of temperature and precipitation 
combinations. Bars that are more vertical indicate that the performance of the system is more sensitive to 
changes in average annual precipitation levels while bars that are more horizontal indicate that the system 
performance is more sensitive to warming temperatures.  
 
It is important to note that the response surface does not describe performance at any given time in the future. 
The response surface simply illustrates how the system performs over the given range of precipitation and 
temperature. Also of importance is that the response surfaces presented in this report are for the current system 
infrastructure configuration, operations priorities, and regulations. The surfaces would change if any of these 
were to change in the future.  
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Performance Metric 1: Oroville Storage 
The response surface for Oroville April 1st Storage shows that historical simulated April 1st storage levels are 
approximately 3 million acre-feet (MAF), and that this metric is only moderately sensitive to changes in 
temperature and sea level, but is highly sensitive to changes in precipitation. A 10% increase in precipitation 
would be required to offset the storage losses resulting from a 2-degree C increase in temperature. This 
metric is less sensitive to temperature increase because it measures accumulated runoff into Oroville 
reservoir during the winter rainy season. Higher temperatures are likely to result in less snow fall and faster 
snow melting rates, with the result that a higher proportion of the winter precipitation would end up in the 
reservoir, and less would remain high in the watershed as snow. As this additional water enters the reservoir 
it increases storage levels, but leaves less water in the upper watershed to replenish the reservoir later in the 
season. 

 
Figure 27. Response Surface – April 1st Oroville Storage 

 

Risk is informed by the addition of the bivariate normal climate change cloud (Table 10) to Figure 27, as 
shown in Figure 28. The centroid of the GCM cloud is located at approximately 2 degrees of warming by mid-
century, without a clear signal in precipitation change. The cloud indicates warming on the range from 1 to 3 
C, with great uncertainty in future precipitation (which could be anywhere from 20% less to 28% more than 
recent historical). The uncertainty contained in Figure 28 makes it difficult to develop water system plans, as 
it is possible that April 1st Oroville Reservoir Storage might be greater (blue) or less (orange/brown) than 
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historical. As this stage of analysis, it is useful to evaluate probability distributions that can help to inform 
thinking on the likelihood of shortages in median, wet and dry climate states. 

 

 

Figure 28. Response Surface – April 1st Oroville Storage, with GCM “cloud” 

 

Figure 29 presents a cdf (a) and pdf (b) for April 1st Oroville reservoir storage. The cdf (Figure 29a) shows a 
downward shift of approximately 0.2 MAF (5-8%) in median April 1st Oroville storage by mid-century. The 
decrease in future April 1st Oroville storage is more significant at the 25th percentile, meaning that years that 
have historically been marked by low storage are likely to be disproportionately drier in the future, with less 
change during years of higher than average storage. The pdf (Figure 29b) shows only a small (1-2%) 
downward shift in the mode of the pdf of future Oroville April 1st storage relative to current conditions 
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Figure 29. Shift in April 1st Oroville storage, Current to Mid-Century Conditions 

 

The response surface for Oroville September 1st Storage (Figure 30) shows that historical simulated 
September 1st storage levels are approximately 2 MAF and that this metric is more sensitive to changes in 
temperature and sea level change than is April 1st Oroville reservoir storage. At temperature increases above 
2.5 degrees C, even a 30% increase in average annual precipitation would not offset the loss in storage from 
increased temperatures. As described in reference to the April 1st Storage metric, the diminished snow 
reserves associated with higher temperature climate possibilities reduce the water available for later season 
replenishment, culminating in much lower storage levels at the end of the summer. This system response is 
also related to the higher sea levels assumed at higher temperature change levels. Above 1.5 degrees C, 45 
cm of sea level rise are assumed, thus requiring more water to be released from storage (especially during 
the summer months) to repel sea water intrusion and meet delta outflow and salinity requirements. There is 
very little reason to believe, based on the GCM cloud superimposed on Figure 30 (right) that future Oroville 
Reservoir Storage will be greater than historical, and it seems likely that it will be substantially less. 
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Figure 30. Response Surface – September 1st Oroville Storage without (left) and with (right) GCM “cloud” 

 

Figure 31a presents a cdf for September 1st Oroville reservoir storage. The cdf shows a downward shift of 
approximately 0.6 MAF (25-30%) in median September 1st Oroville storage by mid-century. The decrease in 
future September 1st Oroville storage is similarly significant at the 75th percentile, meaning that years that 
have historically been marked by high storage are likely to be disproportionately drier in the future, with less 
change during years of lower than average storage. Figure 31b shows a large (35-40%) downward shift in the 
mode of the pdf of future Oroville September storage relative to current conditions. 
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Figure 31. Shift in September 1st Oroville Storage, Current to Mid-Century Conditions 

 

Performance Metric 2: Net Delta Outflow 
The response surfaces for net delta outflow (Figure 32a-d) show the relative sensitivity of delta outflow in 
each season to precipitation change, temperature change, and sea level change. Winter delta outflow (Figure 
32a) is largely insensitive to temperature change and sea level change, but highly sensitive to precipitation 
change, with ±10% precipitation change resulting in ±25-30% change in delta outflow. The response of spring 
delta outflow (Figure 32b) is similar, with slightly more horizontal contour lines representing a greater 
sensitivity to temperature change (but still no noticeable response to discrete changes in sea level rise at 1 
and 1.5 C). In the case of summer and fall net delta outflow (Figure 32c-d) sea level rise pulls the contours to 
the left at between 1 and 1.5 C, meaning that net delta outflow is greater with the addition of sea level rise 
than it would be were sea level held at current levels. Greater precipitation does not appreciably increase net 
delta outflow in the summer or fall.  
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Figure 32. Response Surfaces –Net Delta Outflow 

 

With the addition of the GCM “cloud” to the response surfaces for net delta outflow (Figure 33a-d), it 
becomes apparent that spring (b) and summer (c) net delta outflows are more likely to diminish than are 
winter (a) net delta outflows, which stand a fair chance of increasing (and maybe substantially). The signal is 
less clear when it comes to fall (d) net delta outflows, for which the GCMs indicate the reasonable possibility 
of small increases, or somewhat severe decreases.  
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Figure 33. Response Surfaces –Net Delta Outflow with GCM “cloud” 

 

Figure 34a presents a cdf for winter net delta outflow. The cdf shows a small (14%) decrease in median delta 
outflow, a similar decrease at the 75th percentile, and no significant change under historically low flow 
conditions. Of note, evaluation of the ensemble of simulations shows that, at higher flows, year 2050 winter 
net delta outflow could be higher than historical. Figure 34b shows no significant change in the mode of the 
pdf, current to future. 
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Figure 34. Shift in Winter Net Delta Outflow, Current to Mid-Century Conditions 

Figure 35a presents a cdf for spring net delta outflow. The cdf shows a decrease in median delta outflow of 
25-30%, similar (25-30%) decreases in low flow (25th percentile), and relatively smaller decreases (and 15-
20%) at high flow (75th percentile) conditions. Figure 35b indicates a substantial (30-35%) decrease in the 
most common (mode of pdf) spring net delta outflows. 
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Figure 35. Shift in Spring Net Delta Outflow, Current to Mid-Century Conditions 

 

Figure 36 indicates small (10-15%) increase in summer net delta outflow at every percentile (25th, 50th, 75th), 
and a small (10-13%) increase in the mode of the pdf.   

 



51 
 

 

Figure 36. Shift in Summer Net Delta Outflow, Current to Mid-Century Conditions 

 

Figure 37a shows small to negligible (<10%) change in fall net delta outflow at middle-high range flows, but 
potentially large (25-30%) decrease in fall net delta outflow at smaller flow values. The downward shift in the 
mode of the pdf (Figure 37b) is substantial (45-50%). 
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Figure 37. Shift in Fall Net Delta Outflow, Current to Mid-Century Conditions 

 

Performance Metric 3: Annual SWP Deliveries 
The response surface for average annual SWP deliveries (Figure 38) shows sensitivity to changes in 
temperature, precipitation, and sea level rise. Sea level rise changes (described in reference to Table 7) are 
clearly evident in the response surface as inflection points. It should be noted that the values on this 
response surface are averages across 650 years of simulation at each temperature and precipitation 
combination; SWP deliveries in any given years within a simulation could be much higher or lower.  

At 2.0 degrees C warming, roughly the amount of warming expected for the SWP watershed area by mid-
century, and no change in precipitation, average annual SWP deliveries would be expected to be 
approximately 400,000 AF/year less than historical, which is a nearly 15% decrease relative to current 
conditions.  

The GCM “cloud” superimposed on Figure 38 (right) informs the likelihood of change in SWP deliveries. From 
the figure it appears much more likely that SWP deliveries will decrease than increase (though an increase is 
plausible, with more than 10% increase in average annual precipitation), and it is reasonable to expect a 
substantial decrease in SWP deliveries, were temperature to increase 2 C and precipitation decrease. 
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Figure 38. Response Surface – Annual SWP Deliveries without (left) and with (right) GCM “cloud” 

 

Figure 39a shows a decrease in median future SWP deliveries of approximately 11% relative to current 
conditions, with greater (approximately 24%) decreases at low flow conditions and relatively lower 
(approximately 8%) decreases at high flow conditions. Figure 39b indicates a decrease in the mode of the pdf 
of SWP deliveries of approximately 10%. 
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Figure 39. Shift in SWP Annual Deliveries, Current to Mid-Century Conditions 

 

Performance Metric 8: Annual SWP Delivery Shortages 
The response surface for Average Annual System Shortages (Figure 40) shows that system shortages have 
historically been very low, averaging around 2,500 acre-feet per year. As the climate warms, system 
shortages increase but at a fairly slow rate, even with an increase in temperature of 4 degrees C and a loss of 
10 percent of precipitation, average annual system shortages would still be expected to be less than 70 TAF 
per year. At higher levels of precipitation decline, annual system shortages increase more rapidly, reaching 
about 400 TAF per year under the most stressful conditions analyzed. The black, historical performance level 
line in this plot is somewhat irregular, moving diagonally to the right up at an increasing rate up to 1.5 
degrees C of warming and then essentially going vertical. This behavior appears to indicate that sea level rise 
is the dominant factor in driving system shortages. Above 1.5 degrees C no additional sea level rise is added 
(beyond the 45 cm incurred at 1.5 degrees C) and no additional increase in system shortages occur. The GCM 
“cloud” superimposed on Figure 40 (right) indicates the likelihood of a small increase in shortages in the 
future. 
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Figure 40. Response Surface – Annual SWP Delivery Shortage without (left) and with (right) GCM “cloud” 

 

Figure 41a shows no meaningful change in shortages at any percentile of water availability (shortages are 
rare historically and will continue to be rare in the future), though the mode of the pdf (Figure 41b) shifts 
downward from -0.4 to -2 under future climate conditions, meaning that the average size of shortages (when 
they occur) will be larger in the future than it has been in the past. 
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Figure 41. Shift in Annual SWP Delivery Shortage, Current to Mid-Century Conditions 

Summary 
Despite the wide range of uncertainty, the results of this analysis show the likelihood of a downward shift in 
DWR system performance by 2050. Only a small portion of the conditional climate probability density for 
each performance metric indicates improved system performance (performance better than historical). 
Decreased performance is especially acute for average Oroville September storage, SWP deliveries, and 
spring net delta outflows, in which substantial downward shifts are identified. 

The analysis summarized here suggests that vulnerabilities to the SWP from persistent long-term changes in 
climate are likely to be significant. However, this approach to system evaluation and vulnerability assessment 
provides opportunities for improved climate change planning.  

Decision scaling allows planners to quantify the risks and costs associated with both the status quo, and 
those of adaptation strategies. Because of the uncertainty inherent in projections of future climate 
conditions, planning objectives need to acknowledge and accommodate the unknown. It may not be feasible 
to plan for every possible climate outcome; however, with quantitative assessments of future risk such as 
those presented here, quantitative adaptation objectives can be established and evaluated. Climate changes 
will not stop at mid-century. Indeed, the impacts are expected to become increasingly severe toward the end 
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of the century. Thus, adaptation objectives and the strategies to achieve those objectives will need to be 
continually implemented into the future in response to (and ideally in anticipation of) impacts.   

At the next stage of this project, refinements will be made to the methodology presented in this Inception 
Report, and the potential benefit of a sample of proposed DWR climate change adaptation strategies will be 
systematically evaluated. 

Other Considerations and Next Steps 
The analysis presented here represents the first step in the use of decision scaling to evaluate climate 
vulnerabilities to the SWP. Additional analysis will be completed in the coming year to evaluate the changing 
likelihood of drought conditions, and DWR system vulnerabilities to those conditions. The approach 
described in this Inception Report will also be used to evaluate a suite of potential adaptation strategies that 
will be presented in DWR’s forthcoming adaptation plan. 

Next Steps: 

1. Revise sample strategy to filter for: 
a. ±1% historic annual precipitation mean 
b. ±5-10% historic annual precipitation standard deviation 
c. 90% significance level for 15-year low frequency annual precipitation signal 

2. Likely adaptation strategies to be explored: 
a. 500,000 acre-feet north of delta groundwater storage 
b. 500,000 acre-feet south of delta groundwater storage 
c. California Water Fix 
d. Improved multi-objective upper watershed management 
e. Potentail offstream surface storage 
f. Improved forecasting skill 
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Appendix 
This supplemental section presents figures describing in-process analysis of the effect of the inclusion of the 
15-year wavelet signal in the weather generator resampling process. Figure 42 shows that weather generator 
traces that included the wavelet signal (purple) more closely followed the historical (CalLite source 
streamflow, 1922-2003) at moderately high flows, but that the weather generator traces without the wavelet 
signal (salmon) better matched the historical at moderately low flows. Observed historical streamflow, and 
both types of weather generator traces (which were conditioned on the observed record) underestimated 
low flows and overestimated high flows relative to the long-term paleo record. 

 

 

Figure 42. CDF of annual streamflow of a subsample of wavelet (WARM) and non-wavelet (ARMA) weather-
generated traces (no temp/precip change) relative to observed historical and paleo record cdfs 

 

Figure 43 reproduces Figure 42 but combines the weather generator traces with and without the 15 year 
signal into a single trace called “simulated” (blue). The combined trace follows very closely on the observed 
historical at low flow values, and splits the difference between the observed historical and paleo historical 
data at higher flows. Figure 43 argues for a redesigned sampling strategy that draws weather generator 
traces from both wavelet (WARM) and non-wavelet (ARMA) sampling algorithms. 

 



65 
 

 

Figure 43. CDF of annual streamflow of a subsample of all weather-generated traces (no temp/precip change) 
relative to observed historical and paleo record cdfs 
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